Measuring correlation risk

Roza Galeeva, Jiri Hoogland, Alexander Eydeland
Morgan Stanley

January 16, 2007
DISCLOSURE The information herein has been prepared solely for informational purposes and is not an offer to buy or sell or a solicitation of an offer to buy or sell any security or instrument or to participate in any trading strategy. Any such offer would be made only after a prospective participant had completed its own independent investigation of the securities, instruments or transactions and received all information it required to make its own investment decision, including, where applicable, a review of any offering circular or memorandum describing such security or instrument, which would contain material information not contained herein and to which prospective participants are referred. No representation or warranty can be given with respect to the accuracy or completeness of the information herein, or that any future offer of securities, instruments or transactions will conform to the terms hereof. Morgan Stanley and its affiliates disclaim any and all liability relating to this information. Morgan Stanley, its affiliates and others associated with it may have positions in, and may effect transactions in, securities and instruments of issuers mentioned herein and may also perform or seek to perform investment banking services for the issuers of such securities and instruments.

The information herein may contain general, summary discussions of certain tax, regulatory, accounting and/or legal issues relevant to the proposed transaction. Any such discussion is necessarily generic and may not be applicable to, or complete for, any particular recipient’s specific facts and circumstances. Morgan Stanley is not offering and does not purport to offer tax, regulatory, accounting or legal advice and this information should not be relied upon as such. Prior to entering into any proposed transaction, recipients should determine, in consultation with their own legal, tax, regulatory and accounting advisors, the economic risks and merits, as well as the legal, tax, regulatory and accounting characteristics and consequences, of the transaction.

Notwithstanding any other express or implied agreement, arrangement, or understanding to the contrary, Morgan Stanley and each recipient hereof are deemed to agree that both Morgan Stanley and such recipient (and their respective employees, representatives, and other agents) may disclose to any and all
persons, without limitation of any kind, the U.S. federal income tax treatment of the securities, instruments or transactions described herein and any fact relating to the structure of the securities, instruments or transactions that may be relevant to understanding such tax treatment, and all materials of any kind (including opinions or other tax analyses) that are provided to such person relating to such tax treatment and tax structure, except to the extent confidentiality is reasonably necessary to comply with securities laws (including, where applicable, confidentiality regarding the identity of an issuer of securities or its affiliates, agents and advisors).

The projections or other estimates in these materials (if any), including estimates of returns or performance, are forward-looking statements based upon certain assumptions and are preliminary in nature. Any assumptions used in any such projection or estimate that were provided by a recipient are noted herein. Actual results are difficult to predict and may depend upon events outside the issuer’s or Morgan Stanley’s control. Actual events may differ from those assumed and changes to any assumptions may have a material impact on any projections or estimates. Other events not taken into account may occur and may significantly affect the analysis. Certain assumptions may have been made for modeling purposes only to simplify the presentation and/or calculation of any projections or estimates, and Morgan Stanley does not represent that any such assumptions will reflect actual future events. Accordingly, there can be no assurance that estimated returns or projections will be realized or that actual returns or performance results will not be materially different than those estimated herein. Any such estimated returns and projections should be viewed as hypothetical. Recipients should conduct their own analysis, using such assumptions as they deem appropriate, and should fully consider other available information in making a decision regarding these securities, instruments or transactions. Past performance is not necessarily indicative of future results. Price and availability are subject to change without notice. The offer or sale of securities, instruments or transactions may be restricted by law. Additionally, transfers of any such securities, instruments or transactions may be limited by law or the terms thereof. Unless specifically noted herein, neither Morgan Stanley nor any issuer of securities or instruments has taken or will take any action in any jurisdiction that would permit a public
offering of securities or instruments, or possession or distribution of any offering material in relation thereto, in any country or jurisdiction where action for such purpose is required. Recipients are required to inform themselves of and comply with any legal or contractual restrictions on their purchase, holding, sale, exercise of rights or performance of obligations under any transaction. Morgan Stanley does not undertake or have any responsibility to notify you of any changes to the attached information.

With respect to any recipient in the U.K., the information herein has been issued by Morgan Stanley & Co. International Limited, regulated by the U.K. Financial Services Authority. THIS COMMUNICATION IS DIRECTED IN THE UK TO THOSE PERSONS WHO ARE MARKET COUNTERPARTIES OR INTERMEDIATE CUSTOMERS (AS DEFINED IN THE UK FINANCIAL SERVICES AUTHORITY’S RULES).

ADDITIONAL INFORMATION IS AVAILABLE UPON REQUEST.
Introduction:

- Correlation as measure of dependence for pricing complex derivatives.
- Limitations to the use of correlation
- Practical considerations often force use of correlation as dependence-measure
- What is the sensitivity of prices to correlation parameters? *Correlation VaR.*
Outline:

- What is correlation?
- What do we need: distribution of correlation matrices
- How to get perturbations of correlations and hence distributions
- Examples
- Discussion
Correlation

- Linear correlation is most used measure of dependence between random variable X and Y with finite variances.

$$\rho(X, Y) = \frac{\text{Cov}[X, Y]}{\sqrt{\sigma^2[X] \sigma^2[Y]}}$$

- The pitfalls and limitations are investigated in detail in by Embrechts, McNeil, Straumann [1999]
Constraints

For \(n \) random variables \(X_1, X_2, \ldots, X_n \) we have correlations \(\rho_{ij} \) between \(X_i, X_j \)

Correlation matrices must satisfy the following properties \((i, j = 1, \ldots, n)\):

- \([−1, 1]$: \(-1 \leq \rho_{ij} \leq 1\)
- \(\rho_{ii} = 1\)
- \(\rho_{ij} = \rho_{ji}\)
- The matrix has to be positive \emph{semidefinite}
Estimating correlations

- Historical data.
- *Implied* correlations
Perturbing the correlation matrix

To get random sample of correlation matrices we apply four methods:

• Bootstrapping

• Element-wise perturbation

• Perturbation with the help of angle parametrization

• Perturbation of the eigen-values.
Bootstrap method

The bootstrap is a Monte Carlo \textit{resampling} method.

1. Generate N uniform i.i.d. random integers $n_1, n_2, \ldots, n_N \in [1, N]$.

2. Create a sample $\hat{X} \equiv \{X_{n_i}, Y_{n_i}\}_{i=1}^N$

3. Calculate $\hat{\rho}$ using the sample \hat{X}.

4. Repeat the previous steps M times with M being a large number.
Perturbing individual correlations

Turkey, Epperlein, Christofides [2003] propose to perturb the correlation matrix locally to a desired target matrix with use of

- Re-ordering
- Cholesky decomposition to localize the perturbation to the last entries in the Cholesky matrix

They obtain an analytical solution for the bounds of a single correlation entry.
Angle representation (TAP)

Proposed by Brigo, Mercurio, Rapisarda [2002].

- Parametrize correlation matrix via *unique* lower-triangular matrix of angles in $[0, \pi]$.
- This angle-representation maps to a Cholesky matrix.
- Automatically satisfies the correlation constraints.
- Angles are found via a robust and efficient procedure.
- Through these angles the space of all correlation matrices is covered.
Angle representation (TAP)

Correlation matrix $\rho = LL^T$:

$$\rho_{ij} = \sum_{k=1}^{N} l_{ik} l_{jk}$$

The elements of the lower-triangular matrix L are parameterized in terms of $N(N-1)/2$ angles $\theta_{ij} \in [0, \pi]$ ($j < i$) with

$$l_{ij} = \begin{cases}
\cos \theta_{ij} \prod_{k=1}^{j-1} \sin \theta_{ik} & j < i \\
\prod_{k=1}^{i-1} \sin \theta_{ik} & j = i
\end{cases}$$
Angle representation (TAP)

Simple algorithm

1. Generate random angles θ_{ij} around the base angles θ_{ij}^0 with some distribution $\pi(\theta_{ij} | \theta_{ij}^0)$, which is symmetric and centered around the base-correlation θ_{ij}^0 for every i, j.

2. Historical analysis indicates angles distributed around the mean, with a standard deviation in the order of $\sigma = 5\%$.
Angle representation (TAP)

We propose two perturbation methods:

- Perturb angles using one standard normal variate $z \sim N(0, 1)$

$$\hat{\theta}_{ij} = \arctan(\tan(\theta_{ij} + \frac{\pi}{2})(1 + \sigma z)) + \frac{\pi}{2}$$

- Perturb angles θ_{ij} using i.i.d. standard normal variates $z_{ij} \sim N(0, 1)$

$$\hat{\theta}_{ij} = \arctan(\tan(\theta_{ij} + \frac{\pi}{2})(1 + \sigma z_{ij})) + \frac{\pi}{2}$$
Perturbing eigenvalues

Generate random correlation matrices around the base correlation matrix through the *perturbation of eigen-values*.

\[\rho_{ij} = \sum_{k,l=1}^{N} V_{ik} \Lambda_{kl} V_{lj} \]

where \(\Lambda_{kl} \equiv \lambda_k \delta_{kl} \) and \(\lambda_1 \geq \lambda_2 \geq \ldots \lambda_N \geq 0 \).

Note the constraint \(\sum_{k=1}^{N} \lambda_i = N \).
Perturbing eigenvalues

Algorithms to perturb the eigen-values.

1. Generate N i.i.d random standard normal variates $z_i \sim N(0, \sigma_i)$

2. Compute perturbed eigenvalues $\hat{\lambda}_i = \lambda_i e^{\sigma_i z_i}$

3. Normalize the eigen-values such that $\sum_{k=1}^{N} \hat{\lambda}_i = N$.
Perturbing eigenvalues

- The other algorithms are variations of the following method

1. Generate random index $K \in [1, \ldots, n]$ according to distribution $p_i \geq 0$ with $\sum_{i=1}^{n} p_i = 1$.
2. Generate an i.i.d. standard normal variable $z \sim N(0, 1)$.
3. Compute the perturbed eigen-value λ_K

$$\tilde{\lambda}_K = \lambda_K e^{\sigma K z}$$
Perturbing eigenvalues

The distribution p_i could be chosen as follows:

1. Perturb the largest eigen-values more: $p_i = \frac{\lambda_i}{n}$

2. Perturb the eigen-values uniformly: $p_i = \frac{1}{n}$

3. Pick one specific eigen-value: $p_i = \delta_{iK}$
Perturbing eigenvalues

Having perturbed eigenvalues, we define the perturbed correlation matrix via

$$\tilde{\rho}_{ij} = \sum_{k,l=1}^{n} V_{ik} \tilde{\Lambda}_{kl} V_{lj}$$

where $\tilde{\Lambda}_{kl} \equiv \tilde{\lambda}_k \delta_{kl}$ is the diagonal matrix with the perturbed eigen-values $\tilde{\lambda}_i$. To ensure that $\sum_{i=1}^{n} \rho_{ii} = n$ we need to renormalize the random correlation matrix $\tilde{\rho}$:

$$\tilde{\rho}_{ij} = \frac{\tilde{\rho}_{ij}}{\sqrt{\tilde{\rho}_{ii} \tilde{\rho}_{jj}}}$$
Correlation VaR

To compute the correlation VaR, we perturb the correlation matrix according to some perturbation scheme, which effectively means that we have some distribution $\pi(\rho|\rho^0)$ and compute the density for the portfolio value as a function of the correlation as follows.

$$
\pi(v) = \int \delta(v - V(\rho)) \pi(\rho|\rho^0) d\rho
$$

From this we can then determine the correlation VaR.
Examples

We consider the distribution for two basket options as we perturb the correlation matrix. The basket consists of nine industrial indices, five commodities indices and prices for nine physical commodities.

- In the first example the payoff is defined by

\[
\left(\sum_{i=1}^{n} w_i \frac{X_i(T)}{X_i(0)} - 1 \right)^+ \]

with \(w_i = \frac{1}{n} = \frac{1}{23} \)
Examples

• In the second example we consider a spread option on two baskets, with the first basket being a basket on the industrial indices and the second basket on everything else, i.e. either commodities indices or commodities prices.

The option payoff in this case is given by

\[\left(\sum_{i=1}^{m} w_1^i \frac{X_i(T)}{X_i(0)} - \sum_{i=m+1}^{n} w_2^{i-m} \frac{X_i(T)}{X_i(0)} \right)^+ \]

with \(w_1^i = \frac{1}{m} \) and \(w_2^i = \frac{1}{n-m} \)
Discussion and conclusions

• Various methods to perturb the correlation matrix and compute the correlation VaR: bootstrap, local perturbation, angle perturbation, eigenvalues perturbation.

• Numerical results for these methods applied to two basket options.

• Different methods lead to different results for the correlation VaR.
Discussion and conclusions

- Use of some parametrized method, be it angles or eigenvalues, gives us a convenient tool to stress-test complicated portfolios of instruments and to do it in a well-defined manner.

- A consistent application of the correlation VaR measures described in this paper improves our understanding of product sensitivity to correlation and provides us with the useful approach to product comparison.
In the following figure we plot the histograms for the value of the first basket option with all different methods discussed in the article. The sample size is 1000.
Simulation of the biggest eigenvalue

Weighted simulation of eigenvalues

Uniform simulation of eigenvalues

Simulation of angles by parallel shift

Simulation of uncorrelated angles
In the following figure we plot the histograms for the value of the second basket option with all different methods discussed in the article. The sample size is 1000.
Simulation of the biggest eigenvalue

Weighted simulation of eigenvalues

Uniform simulation of eigenvalues

Simulation of angles by parallel shift

Simulation of uncorrelated angles
Comparison of the two examples for the three different cases: bootstrap, largest eigenvalue, parallel shift angles. The left-hand graph shows the results for the first basket option. The right-hand graph shows the results for the second basket option.
<table>
<thead>
<tr>
<th>Method</th>
<th>Largest eigenvalue</th>
<th>Weighted eigenvalues</th>
<th>Uniform eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (%)</td>
<td>6.463</td>
<td>6.463</td>
<td>6.455</td>
</tr>
<tr>
<td>Standard deviation (%)</td>
<td>0.113</td>
<td>0.096</td>
<td>0.094</td>
</tr>
<tr>
<td>95% CorVaR (%)</td>
<td>0.183</td>
<td>0.163</td>
<td>0.156</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Parallel shift angles</th>
<th>Uncorrelated angles</th>
<th>Bootstrap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (%)</td>
<td>6.457</td>
<td>6.458</td>
<td>6.459</td>
</tr>
<tr>
<td>Standard deviation (%)</td>
<td>0.142</td>
<td>0.098</td>
<td>0.181</td>
</tr>
<tr>
<td>95% CorVaR (%)</td>
<td>0.226</td>
<td>0.159</td>
<td>0.294</td>
</tr>
</tbody>
</table>

Basket 1 with value 6.469. Sample size is 1000.
<table>
<thead>
<tr>
<th>Method</th>
<th>Largest eigenvalue</th>
<th>Weighted eigenvalues</th>
<th>Uniform eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (%)</td>
<td>11.496</td>
<td>11.500</td>
<td>11.508</td>
</tr>
<tr>
<td>Standard deviation (%)</td>
<td>0.190</td>
<td>0.173</td>
<td>0.171</td>
</tr>
<tr>
<td>95% CorVaR (%)</td>
<td>0.318</td>
<td>0.290</td>
<td>0.273</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Parallel shift angles</th>
<th>Uncorrelated angles</th>
<th>Bootstrap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (%)</td>
<td>11.500</td>
<td>11.495</td>
<td>11.484</td>
</tr>
<tr>
<td>Standard deviation (%)</td>
<td>0.239</td>
<td>0.168</td>
<td>0.322</td>
</tr>
<tr>
<td>95% CorVaR (%)</td>
<td>0.397</td>
<td>0.289</td>
<td>0.542</td>
</tr>
</tbody>
</table>

Basket 2 with value 11.460. Sample size is 1000.
<table>
<thead>
<tr>
<th>year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>angle 1</td>
<td>1.6154</td>
<td>1.5367</td>
<td>1.5349</td>
<td>1.6186</td>
<td>1.4410</td>
<td>1.5351</td>
<td>1.4737</td>
</tr>
<tr>
<td>angle 2</td>
<td>1.3522</td>
<td>1.4152</td>
<td>1.5380</td>
<td>1.4238</td>
<td>1.4742</td>
<td>1.4679</td>
<td>1.3990</td>
</tr>
<tr>
<td></td>
<td>1.3571</td>
<td>1.3704</td>
<td>1.3509</td>
<td>1.3983</td>
<td>1.4566</td>
<td>1.3225</td>
<td>1.2800</td>
</tr>
<tr>
<td></td>
<td>1.5816</td>
<td>1.4667</td>
<td>1.5378</td>
<td>1.4973</td>
<td>1.5155</td>
<td>1.5745</td>
<td>1.4636</td>
</tr>
<tr>
<td></td>
<td>1.5025</td>
<td>1.5131</td>
<td>1.4012</td>
<td>1.4691</td>
<td>1.4838</td>
<td>1.4702</td>
<td>1.4942</td>
</tr>
<tr>
<td></td>
<td>1.7139</td>
<td>1.3924</td>
<td>1.6819</td>
<td>1.5745</td>
<td>1.4667</td>
<td>1.5450</td>
<td>1.4571</td>
</tr>
<tr>
<td></td>
<td>1.3466</td>
<td>1.4729</td>
<td>1.4773</td>
<td>1.3805</td>
<td>1.4614</td>
<td>1.4103</td>
<td>1.3406</td>
</tr>
<tr>
<td></td>
<td>1.2874</td>
<td>1.1422</td>
<td>1.2289</td>
<td>1.3709</td>
<td>1.3798</td>
<td>1.3533</td>
<td>1.3505</td>
</tr>
<tr>
<td></td>
<td>1.3473</td>
<td>1.4069</td>
<td>1.5215</td>
<td>1.4308</td>
<td>1.5133</td>
<td>1.5729</td>
<td>1.5156</td>
</tr>
<tr>
<td></td>
<td>1.2236</td>
<td>1.1308</td>
<td>1.1263</td>
<td>1.0947</td>
<td>1.1076</td>
<td>1.1246</td>
<td>1.1480</td>
</tr>
<tr>
<td></td>
<td>1.5431</td>
<td>1.4879</td>
<td>1.4354</td>
<td>1.5092</td>
<td>1.4904</td>
<td>1.4293</td>
<td>1.4726</td>
</tr>
<tr>
<td></td>
<td>1.6160</td>
<td>1.4927</td>
<td>1.5977</td>
<td>1.5655</td>
<td>1.4780</td>
<td>1.5493</td>
<td>1.4342</td>
</tr>
<tr>
<td></td>
<td>1.4985</td>
<td>1.4582</td>
<td>1.4643</td>
<td>1.4834</td>
<td>1.4389</td>
<td>1.4945</td>
<td>1.3528</td>
</tr>
<tr>
<td></td>
<td>1.4436</td>
<td>1.2490</td>
<td>1.2804</td>
<td>1.4554</td>
<td>1.3908</td>
<td>1.3064</td>
<td>1.3510</td>
</tr>
<tr>
<td></td>
<td>1.4804</td>
<td>1.4262</td>
<td>1.6954</td>
<td>1.4724</td>
<td>1.4591</td>
<td>1.6313</td>
<td>1.5174</td>
</tr>
<tr>
<td></td>
<td>1.4032</td>
<td>1.1419</td>
<td>1.1286</td>
<td>1.0768</td>
<td>1.0574</td>
<td>0.9655</td>
<td>1.1249</td>
</tr>
<tr>
<td></td>
<td>1.3080</td>
<td>1.2788</td>
<td>1.1634</td>
<td>1.1752</td>
<td>1.0956</td>
<td>1.1695</td>
<td>1.2950</td>
</tr>
<tr>
<td></td>
<td>0.9692</td>
<td>1.0559</td>
<td>0.8521</td>
<td>1.0512</td>
<td>0.9755</td>
<td>0.9228</td>
<td>1.0343</td>
</tr>
</tbody>
</table>

Sample of correlation angles for different subsets of the data.