3 Sampling Distributions for Hypothesis Testing

3.1 Introduction

We seek procedures for testing parameters and constructing confidence (region) estimates for unknown population parameters, such as the mean, μ. These procedures will require distributional assumptions to be made, and so appropriate multivariate distributions need to be considered. In particular, we consider multi-dimensional analogues of the Normal, Chi-square, and Student-t distributions, these being the Multivariate Normal, Wishart, and Hotelling-T^2 distributions.

As a motivating example, consider the household spending data:

<table>
<thead>
<tr>
<th>Groceries (£)</th>
<th>Leisure (£)</th>
<th>Income (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>227.01</td>
<td>96.98</td>
<td>741.29</td>
</tr>
<tr>
<td>241.42</td>
<td>140.44</td>
<td>854.07</td>
</tr>
<tr>
<td>188.08</td>
<td>85.13</td>
<td>812.07</td>
</tr>
<tr>
<td>238.23</td>
<td>158.22</td>
<td>813.69</td>
</tr>
<tr>
<td>235.86</td>
<td>103.06</td>
<td>731.42</td>
</tr>
</tbody>
</table>

Question: Is there any evidence to reject the hypothesis that the mean amounts spent on groceries, leisure, and income are £180, £113, and £750, respectively in households across the population?

3.2 Multivariate Normal Distribution

The Normal distribution is of fundamental importance in univariate sampling theory.

To recall, suppose that $X \sim N(\mu, \sigma^2)$. Then X has a p.d.f. given by

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\}.$$

A generalization of this distribution for a $p \times 1$ random vector X is:

Definition 3.1 (MVN distribution)

A $p \times 1$ random vector X is said to have a multivariate normal (MVN) distribution if its joint p.d.f. is given by

$$f_X(x) = \frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}} \exp\left\{ -\frac{1}{2}(x - \mu)'\Sigma^{-1}(x - \mu) \right\}$$

(1)
for $\mathbf{x} \in \mathbb{R}^p$,

where Σ is a $p \times p$, symmetric, positive-definite, matrix.

Write $\mathbf{X} \sim N_p(\mu, \Sigma)$.

Proposition 3.2 (Mean, Variance of MVN)
Suppose that $\mathbf{X} \sim N_p(\mu, \Sigma)$. Then
(i) $E[\mathbf{X}] = \mu$
(ii) $\text{var}(\mathbf{X}) = \Sigma$.

Remarks 3.3
Suppose that $\mathbf{X} \sim N_p(\mu, \Sigma)$ with $p = 1$. Then, in this case, $\Sigma = \sigma_{11} = \sigma_1^2$, and so

$$f_{\mathbf{X}}(\mathbf{x}) = f_{X_1}(x_1) = \frac{1}{(2\pi)^{1/2}\sigma_1^{1/2}} \exp \left\{ -\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2 \right\}$$

for $x_1 \in \mathbb{R}$ i.e. $X_1 \sim N(\mu_1, \sigma_1^2)$. Thus, the MVN really is a generalization of the univariate Normal.

3.3 Bivariate Normal Distribution

![Figure 1: Bivariate Normal density](image)

The Bivariate Normal distribution is just the MVN for $p = 2$. So, here, $\mu = (\mu_1, \mu_2)'$, and

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$
where \(\rho = \frac{\sigma_{12}}{\sigma_1 \sigma_2} \) (the correlation coefficient between \(X_1 \) and \(X_2 \)).

It can be shown that

\[
f_{(X_1,X_2)}(x_1,x_2) = \frac{1}{2\pi \sigma_1 \sigma_2 \sqrt{1-\rho^2}} \times \exp \left\{ - \frac{1}{2(1-\rho^2)} \left[\left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 + \left(\frac{x_2 - \mu_2}{\sigma_2} \right)^2 - 2\rho \left(\frac{x_1 - \mu_1}{\sigma_1} \right) \left(\frac{x_2 - \mu_2}{\sigma_2} \right) \right] \right\} \tag{2}
\]

for \((x_1,x_2) \in \mathbb{R}^2\) and provided that \(|\rho| < 1 \).

Remarks 3.4 (Comments on the Bivariate Normal)

(i) The p.d.f. of (2) is specified by 5 parameters, \(\mu_1, \mu_2, \sigma_1, \sigma_2 \) and \(\rho \).

(ii) \(x_1, x_2 \) only appear in the argument of the \(\exp(\cdot) \) function. So the contour lines of \(f_{(X_1,X_2)}(\cdot,\cdot) \) are given by

\[
\left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 + \left(\frac{x_2 - \mu_2}{\sigma_2} \right)^2 - 2\rho \left(\frac{x_1 - \mu_1}{\sigma_1} \right) \left(\frac{x_2 - \mu_2}{\sigma_2} \right) = k > 0.
\]

These are ellipse equations.

If \(\rho < 0 \), then the major axis has negative slope, and for \(\rho > 0 \), a positive slope; e.g. for \(\Sigma = \begin{bmatrix} 1.5 & -1 \\ -1 & 2.5 \end{bmatrix}, \rho = -1/\sqrt{1.5 \times 2.5} < 0 \), and \(\Sigma = \begin{bmatrix} 1.5 & 1 \\ 1 & 2.5 \end{bmatrix}, \rho = 1/\sqrt{1.5 \times 2.5} > 0 \).

(iii) \(\Sigma \) is positive definite if, and only if, \(|\rho| < 1 \). If \(\rho = 1 \), then rows (or columns) of \(\Sigma \) are no longer linearly independent.
(iv) For this distribution, it is the case that $\rho = 0$ implies that X_1 and X_2 are independent, since

$$f_{X_1, X_2}(x_1, x_2) = \frac{1}{2\pi \sigma_1 \sigma_2 \sqrt{1 - \rho^2}} \exp\left\{-\frac{1}{2(1 - \rho^2)} \left[\left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2 - 2\rho \left(\frac{x_1 - \mu_1}{\sigma_1}\right) \left(\frac{x_2 - \mu_2}{\sigma_2}\right)\right]\right\}$$

with $R_{X_1} = \mathbb{R}$ and $R_{X_2} = \mathbb{R}$, i.e. $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$.

3.4 More on the MVN distribution

Some notes on transformations.

Proposition 3.5
Suppose $X \sim N_p(\mu, \Sigma)$ and $Y = A'X$, where A is a $p \times m$ matrix of constants. Then

$$Y \sim N_m(A'\mu, A'\Sigma A).$$

Theorem 3.6
$X \sim N_p(\mu, \Sigma)$, where rank(Σ) = p, if, and only if, $X = \mu + BU$,

where $U \sim N_p(0, I)$, $BB' = \Sigma$, and B is a $p \times p$ constant matrix of full rank p.

Proposition 3.7
Suppose $X \sim N_p(\mu, \Sigma)$. If Σ is of full rank p, and B is a $p \times p$ constant matrix of full rank p such that $BB' = \Sigma$, then

$$U \sim B^{-1}(X - \mu) \sim N_p(0, I).$$

Proposition 3.8 (Distribution of sample mean vector)
Suppose $X_r \sim N_p(\mu, \Sigma)$, $r = 1, \ldots, n$, and mutually independent. Then

$$\bar{X} := \frac{1}{n} \sum_{r=1}^{n} X_r \sim N_p\left(\mu, \frac{1}{n} \Sigma\right).$$

Proposition 3.9
Suppose $X \sim N_p(\mu, \Sigma)$ (where Σ is of full rank p so that Σ^{-1} exists). Then

$$(X - \mu)'\Sigma^{-1}(X - \mu) \sim \chi^2_p.$$
3.5 Wishart Distribution

The Wishart distribution is a generalization of the χ^2-distribution for random vectors.

Definition 3.10 (Wishart distribution)

Suppose $X_r \sim N_p(\mu_r, \Sigma)$, $r = 1, \ldots, f$, and mutually independent. Then the matrix

$$W = \sum_{r=1}^{f} X_r X'_r$$

is said to have a **Wishart** distribution on f degrees of freedom.

Distinguish between 2 cases:

(i) If $\mu_r = 0$ for all $r = 1, \ldots, f$, then distribution is **central**, and we write $W \sim W_p(f, \Sigma)$ (with M nominally equal to a $f \times p$ zero matrix).

(ii) Otherwise, we say that W is **non-central**, and write $W \sim W_p(f, \Sigma; M)$, where $M = [\mu_1, \ldots, \mu_f]'$.

Remarks 3.11

(i) For $p = 1$, $\mu_r = 0$, $r = 1, \ldots, f$, $\Sigma = \sigma^2$, say, then $X_r \sim N(0, \sigma^2)$, and so

$$W = \sum_{r=1}^{f} X_r^2 \sim W_1(f, \sigma^2).$$

On the other hand, $\frac{X_r}{\sigma} \sim N(0, 1)$, which implies that

$$\frac{1}{\sigma^2} \sum_{r=1}^{f} X_r^2 \sim \chi^2_f \Rightarrow W = \sum_{r=1}^{f} X_r^2 \sim \sigma^2 \chi^2_f.$$

(ii)

$$E[W] = f \Sigma + M'M$$

Proof

From Remarks 1.16 (v), it can be deduced that

$$E[X_rX'_r] = \Sigma + \mu_r\mu'_r.$$

Hence

$$E[W] = \sum_{r=1}^{f} E[X_rX'_r] = \sum_{r=1}^{f} \{\Sigma + \mu_r\mu'_r\}$$

$$= f \Sigma + \sum_{r=1}^{f} \mu_r\mu'_r = f \Sigma + M'M \quad \square$$
(iii) Suppose \(W_1 \sim W_p(f_1, \Sigma; M_1) \) and \(W_2 \sim W_p(f_2, \Sigma; M_2) \) independently. Then

\[
W_1 + W_2 \sim W_p(f_1 + f_2, \Sigma; M)
\]

where \(M = \begin{bmatrix} M_1 \\ M_2 \end{bmatrix} \).

(iv) Suppose \(W \sim W_p(f, \Sigma; M) \) and \(C \) is a \(p \times q \) matrix of constants. Then

\[
C'WC \sim W_q(f, C'\Sigma C; MC).
\]

3.6 Hotelling \(T^2 \)-distribution

This is a multivariate extension of the Student-\(t \) distribution.

Definition 3.12 (Hotelling \(T^2 \))

If \(Y \sim N_p(0, I) \) and \(W \sim W_p(f, I) \) independently, then

\[
\alpha = fY'W^{-1}Y
\]

is said to have a Hotelling \(T^2 \)-distribution.

Write \(\alpha \sim T^2_p(f) \).

The next proposition is particularly useful for deriving various tests for the population mean in the case where the population covariance matrix is unknown.

Proposition 3.13 (Useful result for hypothesis testing)

Suppose that \(Y \sim N_q(\mu_0, \frac{1}{f} \Sigma) \) with \(f > q - 1 \), and \(fS \sim W_q(f, \Sigma) \) independently. Then

(i) \(T^2 := k(Y - \mu_0)'S^{-1}(Y - \mu_0) \sim T^2_q(f) \)

(ii) \(\left(\frac{f - q + 1}{fq} \right) T^2 \sim F_{q,f-q+1} \).
3.7 Application: Test for the mean

Suppose that we have a random sample $X_r \sim N_p(\mu, \Sigma)$, $r=1, \ldots, n$, where both μ and Σ are unknown.

We seek a test for $H_0 : \mu = \mu_0$

vs.

$H_1 : \mu \neq \mu_0$.

To this end, consider the statistic

$$T^2 = n(\overline{X} - \mu_0)'S^{-1}(\overline{X} - \mu_0).$$

Since \overline{X} is an apparently ’good’ estimator of μ, then if H_0 is true, \overline{X} should be close to μ_0, and so T^2 should be small.

On the other hand, if H_0 is not true, then \overline{X} should be far from μ_0, and so T^2 should be large.

So perhaps a reasonable decision procedure to adopt would be to:

Reject H_0 if $T^2 > k'$

Accept H_0 if $T^2 \leq k'$ for some constant $k' > 0$.

But how do we choose k'?

It can be shown that \overline{X} and S are independent, and that

$$\overline{X} \sim N_p(\mu, \frac{1}{n}\Sigma) \quad (n-1)S \sim W_p(n-1, \Sigma).$$

Thus, it follows from the previous proposition that under H_0, and for $n > p$,

$$T^2 = n(\overline{X} - \mu_0)'S^{-1}(\overline{X} - \mu_0) \sim T^2_p(n-1)$$

and

$$\frac{(n-p)}{p(n-1)}T^2 \sim F_{p,n-p}.$$

Details of the test are determined as follows:

$$\alpha = \mathbb{P}(\text{Reject } H_0|H_0 \text{ true}) = \mathbb{P}(T^2 > k'|H_0 \text{ true})$$

$$= \mathbb{P}\left(\frac{(n-p)}{p(n-1)}T^2 > k'|H_0 \text{ true}\right)$$

so we should select $k' = F_{p,n-p,\alpha}$, the upper $100\alpha\%$ point of the F-distribution with p and $n-p$ degrees of freedom.

Thus we reject H_0 (in favour of H_1) if

$$\frac{(n-p)T^2_{\text{obs}}}{p(n-1)} > F_{p,n-p,\alpha}$$

7
i.e.

\[T_{obs}^2 > \frac{p(n - 1)}{n - p} F_{p, n-p, \alpha} \]

and accept \(H_0 \) otherwise.

```r
> groceries <- c(227.01, 241.42, 188.08, 238.23, 235.86)
> leisure <- c(96.98, 140.44, 85.13, 158.22, 103.06)
> income <- c(741.29, 854.07, 812.07, 813.69, 731.42)
> spend <- data.frame(groceries, leisure, income)
> S <- var(spend)
> S.inv <- solve(S)
> n <- dim(spend)[1]
> p <- dim(spend)[2]
> n
[1] 5
> p
[1] 3
> m.spend <- apply(spend, 2, mean)
> m.spend
   groceries leisure income
      226.12  116.766  790.508
> mu0 <- c(180, 113, 750)
> mu0
[1] 180 113 750
> T2 <- n * t(m.spend - mu0) %*% S.inv %*% (m.spend - mu0)
> T2
[,1]
[1,] 126.1583
> T2 <- drop(T2)
> T2
[1] 126.1583
> F.obs <- ((n - p) * T2)/(p * (n - 1))
> F.obs
[1] 21.02638
> p.value <- 1 - pf(F.obs, p, n - p)
> p.value
[1] 0.04574171
```

Conclusion: There is evidence to reject the hypothesis at the 5% level of significance.