Not only computing

— also art

JOHN LANSDOWN

Beverley Rowe, one of the founder
members of the Computer Arts Society,
has forcibly — but kindly — pointed out
to me that I was talking nonsense
about probability in the December
1984 issue of Computer Bulletin. He’s
right and I didn’t write what I meant. |
suppose | was trying to say no more
than ‘Just as some probabilities need to
be added and some need to be
multiplied, so some fuzzy variables
need to be MAX-ed and some need to
be MIN-ed’. What I actually said came
out rather differently and seemed to
imply that you could go on adding
probabilities indefinitely, which is
absurd. 1 can only give the excuse that
Dr Johnson gave to the lady who
asked him why, in his dictionary, he'd
wrongly defined something as ‘the knee
of a horse’.

Pattern-making is not so widespread an
art form in the West as it is in the
countries of the East and the Middle
East. Indeed, over here, the process is
often frowned upon and characterised
as ‘mere pattern-making’. To my mind,
this view is mistaken. I believe that the
generation of patterns is a potentially
rich form of art which should be
encouraged. To produce aesthetically
pleasing patterns requires creative
thinking. The results often exploit and
illuminate in a very pure way the
Gestalt principles of pattern recogni-
tion and visual organisation which we
seem to employ when looking at
pictures. Those concerned with
teaching art to school-children, in
particular, should look on programs
for pattern recognition as an important
resource. Ideas of symmetry, similarity,
and continuity as well as the relation-
ships between patterns and mathe-
matics can be readily and engagingly
taught using such programs.

In addition, using computers for
pattern generation need not involve
expensive hardware. Reader, Edward
Collier from Ludlow, has sent me

18 Computer Bulletin June 1985

examples of some of his output from a
program he has written for his Sinclair
Spectrum driving an Epsom RX80F/T+
printer. The program, called Patch-
work, is interactive and, as Edward
says, ‘Once a pattern has been pro-
duced on the screen in a few seconds,
it can be manipulated to make it
symmetrical or a window can be
moved to encompass the most interes-
ting section of the pattern and this in
turn can be magnified to fill the screen.
An alternative way of producing

¥ e ﬁ%

7 I:,:- )
R
AR

b
T

Figure 1

WA BRGNS OIS
SN o
RN

patterns is to magnify characters
(keyboard or user-defined) and then to
make the resultant screen display sym-
metrical’. The effects of these ma-
nipulations are striking and two are
shown as Figures 1 and 2.

At the other end of the scale, from the
points of view both of picture-making
and computer systems, are the draw-
ings shown in Figure 3. These are by
Keith Waters of Middlesex
Polytechnic’s Faculty of Art and Design
and won top prize in the Student
Division of Calcomp’s 25th
Anniversary International Computer
Art Competition. The drawings, titled
‘Effie’, are a selection from a sequence
of views of the Eiffel Tower and were
created using John Vince's Picaso soft-
ware. (Incidentally, on the strength of
this and his other work such as that in
Figure 4, Keith has just been offered a
place on the post-graduate course at
that hot-bed of high quality computer

»

Figure 2

Figure 3

Figure 4




graphics, the Cranston Centre, Ohio
State University.)

What is interesting to me about
these drawings and those of Edward
Collier is that they tend towards the
same degree of complexity as realistic
images without themselves being re-
alistic. Of course, Keith’s drawings are
more like an identifiable object than
Edward’s. But, for example, the actual
Eiffel Tower is made from solid metal
and is not transparent — as Keith’s
drawings might lead a Martian to
believe. Both the ‘realistic’ and the
‘non-realistic’ drawings are, in fact,
conventions — something we often tend
to forget.

There is a debate going on in
computer graphics circles on just how
much realism we should aim for. (This
is not strictly true. Let me say instead,
I have been trying for some time to
start a debate in computer graphics

RS EN TD T SO TREREe o

T T T

Correspon

In my article I explored some possi-
bilities arising from the fact that
user-declared functions can be used
recursively in the version of Basic
implemented on the Sinclair Spectrum.
I indicated that there are limitations
due to the failure of the system to stack
the parameters when function calls are
nested, so that parameter values come
to be overwritten. My attention was
focussed on the type of recursion
which is embodied in the function
definition, as exemplified by recursive
functions for computing factorials,
highest common factors, and so on.
There is, however, another type of
recursion which appears only in the
call of the function, and it is important
to realise that there are limitations here
also, attributable to the failure to stack
parameter values. In this form they
introduce a pitfall for the unwary
which could be troublesome in every-
day programming contexts.

Recursion appearing in the function
call is often illustrated by reference to
a simple non-recursive function to
derive the maximum of two values. In
the conventions of Algol68 this could
take the form

PROC max=(REAL @, b) REAL:
BEGIN IF @ > b THEN
a ELSE b FI END

A programmer wishing to obtain the
maximum out of four values might
then write

x :=max(max(a, b), max(c, d))

and in this he would be using PrOC
max recursively. The same thing can be

B e e ——

circles on just how much realism we
should aim for.) After some years of
thinking otherwise, I no longer believe
that we can achieve general photo-
graphic realism by the techniques we
currently employ. Some objects — par-
ticularly man-made objects — can be
rendered in ways which can fool us
into thinking we are seeing photo-
graphs rather than computer drawings.
In the general case, however, the
complexity of textures, lighting,
colours and forms that real scenes
possess are beyond our capabilities
(and are likely to remain so).

Already some drawings take inordi-
nate amounts of time to process, even
on supercomputers. It will be argued
that a picture presently requiring two
hours to create on a Cray | will need
only 12 minutes, 1.2 minutes or 1.2
seconds on the next generation of
machines. To this [ reply, just compare

e n C e continued

done in Spectrum Basic, in which a
maximum function can be realised
either as on p131 of the manual

10 DEF EN mi(x, y) =
(x+y+aBs(x—y))/2

or using the stratagem I introduced in
my article

5 DEF FN ¢$ (a$, x) = a$ (1 TO
x* LEN a$)

10 DEF FNm(x,y) =
VAL (FN cS("x", x> y)
+ENCS( Yy, x> =1y))

To obtain the maximum out of four
values it seems sensible to write

20 LET x = FN m(FN m(a, b), FN
mic,d))

This, however, will not have the
desired effect. The outer call of the
function invokes two inner calls to
evaluate its parameters. The first of
these evaluates the first parameter as
the maximum value out of @ and b.
When the second inner call is made,
this value is overwritten by the value
of c. The overall result is that the value
assigned to x is the maximum out of
the two values ¢ and d, which may or
may not be the maximum out of the
four values as intended. It is, of course,
easy to find alternative formulations
which avoid the error, burt it is
particularly pernicious in that the
erroneous statement looks perfectly
simple and natural, and also because
the program will probably give correct
results for some sets of input data. The
golden rule for avoiding trouble is to
avoid recursion in the evaluation of
any except the first of multiple para-
meters. (Many versions of Basic only
allow functions of single arguments, so

the problem cannot arise. Two possible

L ey e

a photograph of, say, a random street
scene with a computer rendering of
anything other than essentially ‘un-
realistic’ objects — such as molecules or
water splashes. The photograph ex-
hibits a complexity which is orders of
magnitude greater than that in the
drawing. If my argument is correct,
then we should, I think, be aiming at
convincing naturalism rather than
photographic realism. There are some
cases where images need to be as
realistic as they can be: for example, in
simulations of lighting effect in room
design and, perhaps, for special effects
in films. But, for most other purposes,
convincing naturalism, which exploits
our remarkable perceptual abilities (for
understanding such things as line
drawings), is probably all we need. To
paraphrase Einstein Drawings should
be as realistic as they need to be, but
no more so.

reformulations are as follows:

20 LET x = FN m(FN m(FN m(a,
b),e),d)
and
20 LET x = FN m(a, b):
LET X = FN m(x, ¢):
LET X = FN m(x, d)

Techniques for computing the no-
torious Ackermann’s Function in Basic
have since been discussed by W. L. van
der Poel and now H. J. Gawlik. In my
article I was concerned with recursion
achieved within single-line function
definitions and these gentlemen have
not achieved Ackermann’s Function
within this restriction. The functions |
referred to as difficult (both Acker-
mann’s and the Towers of Hanoi) are
easily, though somewhat inelegantly,
achieved if the programmer makes his
own arrangements for stacking of
variables. The final program presented
by van der Poel shows a highly
ingenious way of achieving a substan-
tial depth of recursion without making
much demand on storage, although his
line 90 cannot ever have an effect. |
have verified (on the Spectrum) that
both of these ingenious programs oper-
ate correctly, and that the operation of
Professor van der Poel’s is unaffected
when line 90 is deleted. That of Mr
Gawlik requires slight modifications to
run on a system where the array
subscripts start from value one rather
than zero.

The designers of the Spectrum are to
be commended, I think, for im-
plementing the vaL function in the way
that makes my ‘dirty trick” possible. It
shows the right sort of bootstrapping
approach to system design and it is a
pity they did not go a little further by
allowing the variables to be stacked.

Computer Bulletin June 1985 19



