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Abstract

In this paper, we show how to combine the EM algorithm with the Restricted Maximum
Likelihood (REML) method to estimate dynamic heterogeneous panel data models. The
EM-REML approach allows us to estimate iteratively both the average e�ects and the indi-
vidual coe�cients. It yields tractable closed form solutions. Compared to Swamy’s random
coe�cients model, our method allows the random coe�cients to have heteroskedastic vari-
ances and leads to an unbiased estimation of the variance components of the model. The
estimation procedure can also be adapted to allow for cross-section dependence. Monte Carlo
simulations reveal that the proposed estimator has good properties even in small samples. A
novel approach to investigate heterogeneity of the sensitivity of sovereign spreads to govern-
ment debt is presented.
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1 Introduction
Nowadays panels in which both N (the number of units) and T (the number of time periods)
are large, are quite common. As shown by Pesaran and Smith (1995), when regression
coe�cients di�er across units, pooling and aggregating in a dynamic model give inconsistent
and misleading estimates of the coe�cients. As a solution, they propose estimating N time
series separately. The expected value of the unit-specific coe�cients can be estimated by
averaging the OLS estimates for each unit. This procedure is called Mean Group estimation.
Alternatively, if one sees the coe�cients as randomly drawn from a common distribution, one
can apply Swamy (1970) GLS estimation, that yields a weighted average of the individual
OLS estimates. A good survey of the literature is provided by Hsiao and Pesaran (2004)
and in Smith and Fuertes (2016). Swamy (1970) focuses on estimating the average e�ect
while the random coe�cients’ residuals are treated as nuisance e�ects and conditioned out
of the problem. However, the estimation of the random components of the model becomes
crucial if the researcher wishes to predict future values of the dependent variable for a given
individual or to describe the past behavior of a particular individual. Joint estimation of the
average e�ect and individual parameters has been proposed by Lee and Gri�ths (1979) and
by Lindley and Smith (1972) in a Bayesian setting and has been further studied by Hsiao et
al. (1998) and Maddala et al. (1997).

In this paper, following the seminal papers of Dempster et al. (1977) and Patterson and
Thompson (1971), we propose to estimate dynamic heterogeneous panels by combining the
EM algorithm with the Restricted Maximum Likelihood estimation, to obtain tractable closed
form solutions of both fixed and random coe�cients and the variance components. While
Swamy (1970) GLS estimator can be obtained by maximizing the marginal likelihood func-
tion, Lee and Gri�ths (1979) show that the random and fixed coe�cients can be estimated
by minimizing the sum of the weighted sum of squared residuals (SSR) of the regression
model and the weighted SSR of the random coe�cients’ equation. In our framework, we
derive an expression for the joint likelihood of the observed data and the random coe�cients
which will be used to infer not only on the average e�ects and unit-specific coe�cients but
also on their variances. Another interesting feature of the EM is that it allows us to make
inference on the random coe�cients population. Indeed, in general, it gives a probability
distribution over the missing data.

The EM algorithm has recently gained attention in the finance literature. Harvey and Liu
(2016) suggest a similar approach to ours to evaluate investment fund managers. The authors
focus on estimating the fund-specific random intercepts population while the slope coe�cients
of the model are assumed to be fixed. Instead, we provide a more general framework where
both the intercept and slope parameters are a function of a set of explanatory variables and
are randomly drawn from a certain distribution. We derive an expression for the likelihood
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of the model accordingly. More importantly, our goals is to illustrate the advantages of
the EM-REML approach in estimating heterogeneous panel data models, compared to the
existing methods.

First, in the static case, estimating heterogeneous panels by EM-REML yields an unbiased
estimation of the variance components. Therefore, this approach has an advantage when T is
relatively small. In particular, the estimator of the variance-covariance matrix of the random
coe�cients proposed by Swamy (1970) is often negative definite. In such cases, the author
suggests eliminating the second term of the right-hand side to obtain a non-negative definite
matrix. Although not unbiased, this alternative estimator is consistent when T tends to
infinity. Lee and Gri�ths (1979) also derives a recursive system of equations as a solution to
the maximization of the likelihood function of the data which incorporates the prior likelihood
of the random coe�cients. Di�erently from the latter, we consider the joint likelihood of the
observed data and the random coe�cients as an incomplete data problem (in a sense which
will be more clear hereafter). We show that maximizing the expected value of the joint
likelihood function with respect to the conditional distribution of the random coe�cients
residuals given the observed data is necessary to obtain an unbiased estimator of the random
coe�cients covariance matrix.

Many economic applications involve behavioral relationships which are dynamic in na-
ture. Therefore, we define the data generating process as an ARDL panel model since one of
the advantages of panel data is that they shed light on the dynamics of adjustment. However,
including lagged dependent variables among the regressors raises a problem of endogeneity
since they are a function of the individual e�ects. Consequently, the estimates of the co-
e�cients will be biased and inconsistent even for large N and even if the error terms are
not serially correlated. Hence, we resort to unbiasedness properties in the static case, while
relying on the consistency properties (which depends upon T being large) when lagged values
of the dependent variable are included among the regressors. This approach is in line with
Maddala et al. (1997). Nevertheless, as it will be shown in the Monte Carlo analysis, the
proposed method has good properties when estimating dynamic panels even when the sample
size is relatively small. Compared to Swamy and the Mean Group estimators, the EM-REML
method leads to a remarkable reduction of the bias of the estimates of the coe�cients of the
model and their variances. As will be clear later on, we need that T > p + rank(W ), where
W is the matrix of explanatory variables including lagged values of the dependent variable
and p is the number of lags included in the model.

In view of the above reasons, the EM-REML approach should be regarded as a valid
alternative to bayesian estimation (as described in Maddala et al. (1997) and Hsiao et al.
(1998)) in those cases in which the researcher wishes to make inference on the coe�cients
distribution while having little knowledge on what a sensible prior might be.

Second, our approach allows the conditional variances of the random coe�cients residuals
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to have heteroskedasticity of unknown functional form and thus can be seen as a generaliza-
tion of the one-way error component model where both the random e�ects and the regression
disturbances are heteroskedastic, as described in Baltagi (2005).1 Ignoring heteroskedasticity
when it is present will still result in consistent estimates of the regression coe�cients. Nev-
ertheless, these estimates will not be e�cient and their standard errors will be biased. The
specifications where either only the random coe�cients residuals or only the unit time-varying
error components are assumed heteroskedastic can be seen as special case. Heteroskedasticity
may occur in many economic applications in which it may be more realistic to model the
variance of the random coe�cients as varying across units.

For example, as shown in Mian and Sufi (2014), households with less wealth and higher
debt are characterized by higher marginal propensity to consume (MPC). Similarly, the
variance of the reaction of consumption to a shock in income may di�er across individuals.
For example, one could expect that the variation of unexplained MPC increases with debt and
decreases with wealth, just as the MPC increases with debt and decreases with accumulated
wealth. Households who own assets and who do not face any borrowing constraint can easily
smooth their consumption. Furthermore, some of the determinants of MPC for wealthy
households may have no explanatory power for MPC of «poor» households and/or viceversa.
In such cases, the estimated variances of the unobserved idiosyncratic components of the
random coe�cients may vary largely across units.

In this paper, the proposed econometric methodology is used to study the determinants
of the sensitivity of sovereign spreads with respect to government debt. First, we show that
financial markets reactions to a shock in government spending are highly heterogenous. We
then model such reactions as function of macroeconomics fundamentals and a set of explana-
tory variables which reflect the history of government debt and economic crises of various
forms. We find that while country-specific macroeconomic indicators are significant deter-
minants of sovereign credit risk, they do not have any significant impact on the sensitivity
of spreads to debt. On the other hand, history of repayment plays an important role. A 1%
increase in the percentage of year in default or restructuring domestic debt is associated with
a 0.52% increase in the additional risk premium in response to an increase in debt.

Finally, the proposed estimation procedure is quite general and can accomodates recent
developments in the dynamic heterogeneous panels literature, such as the CS-ARDL model
developed by Chudik and Pesaran (2015).

The paper is organized as follows. Section 2 describes the regression model and its main
assumptions. In Section 3 an expression for the likelihood of the complete data, which
includes both the observed and the missing data, is derived. The Restricted Likelihood is
also derived. Section 4 illustrates the use of EM algorithm and show how to perform the
two steps of the EM algorithm, called the E-step and the M-step. Results from Monte Carlo

1This literature assumes T is small and N is large.
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experiments are shown in Section 5. In Section 6, an application of the econometric model
is reported. Finally, we conclude.

2 The Dynamic Heterogeneous Panel Model
We assume that the dependent variables, y

it

’s, are generated by an ARDL(p,p) Panel Model2
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with Kú = (K + 1)(p + 1). Using the first p observations as presample, equation (1) can
be rewritten as
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The coe�cients Â
i

’s are assumed to be constant over time but di�er randomly across units.
Individual-specific characteristics are the main source of heterogeneity in the parameters

Â
i

= �f
i

+ “
i

(4)
2The analysis also holds for ARDL(pi,qi) in general. To make notation easier we set p = pi = qj for all i

and j.
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where “
i

= (“Õ
i0, .., “Õ

ip

)Õ is a (Kú ◊ 1) vector of random coe�cients residuals, � is a Kú ◊ l
matrix of unknown fixed parameters and f

i

is a l◊1 vector of observed explanatory variables
that do not vary over time (for instance, Smith (2016) suggests using the group means of the
x

it

’s). The first element of f
i

is one to allow for an intercept.
Equation (4) can be rewritten as
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¢ I
K
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i

(5)

where �̄ = vec (�), which is a Kúl-dimensional vector and F
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= (f Õ
i

¢ I
K

ú) is a Kú ◊ Kúl
matrix.

Swamy (1970) random coe�cients equation is a special case of (5), with f
i

= 1 for all i
and �̄ = Â is a Kú ◊ 1 vector of coe�cients.

Substituting (5) into (3) yields

y
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i
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for i = 1, .., N , where W
i

= Z
i

F
i

.
We assume that:
(i) The regression disturbances are independently distributed with zero means and vari-

ances that are constant over time but di�er across units:

Á
it

≥ i.i.d.N(0, ‡2
Ái

) (7)

(ii) Â
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and Á
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are independent ’t, s and ’i, j.
(iii) The regressors x
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are independent of the Á
it

and “
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.
(iv) The vector containing the random coe�cients’ residuals, “ = (“Õ
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)Õ, is normally
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) (8)
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We allow var (“
i

| f
i

) to be di�erent from var (“
j

| f
j

). In other words —
i

”= —
j

, for i ”= j.
Indeed, under assumption (4), it is likely that the variance of the random coe�cients residuals
is systematically larger for some units than for others depending on the values of the f

i

’s.
For this reason, we allow for heteroskedasticity of unknown form. This phenomenon might
be often observed in practice.

For example, when explaining the determinants of sovereign credit risks, the variance
of the reaction of spreads to an increase in the debt-to-GDP ratio may be much higher for
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those countries with a weak repayment history in financial markets. Given higher uncertainty,
financial markets are quite sensitive to even small shocks, making their decisions more volatile.
Heteroskedasticity may also arise from the simple fact that the explanatory power of f

i

in (4)
varies largely across countries. Reputation, institutional features and other country-specific
fundamentals may be important explanatory factors for some but not for all the countries
under study. If the underlying factors which explain the sensitivity of spreads di�er across
units, treating the unobserved idiosyncratic components of the random coe�cients as if they
were drawn from an identical distribution can be naive.

Cross-Section Dependence and Estimation of Long-Run E�ects. In many economic
applications, the assumption of independence (across units) of the error terms may not hold.
Such cross-section dependence (CSD) may arise from the fact that the errors are driven by
a r ◊ 1 vector of unobserved common factors (’

t

):

Á
it

= · Õ
i

’
t

+ ‘
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(10)

where ·
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is a r ◊ 1 vector of factor loadings and ‘
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is an unobserved random error term
independently distributed across i and t and which satisfies E(‘

it

) = 0 and E(‘2
it

) = ‡2
‘i

.
One way to allow for such common factors and remove the e�ect of CSD is to add

cross-section averages of the dependent and independent variables of the model as shown by
Pesaran (2006) in the static case and Chudik and Pesaran (2015) in the dynamic case. The
regression model is now given by
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Equation (3) is now replaced by
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where are Z
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and Â
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are defined as above.
The vector of long-run e�ects of a set of regressors on the dependent variables can be
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where —̂
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and „̂
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are the EM-REML estimates obtained as described hereafter.
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3 Likelihood of the Complete data
Define the full set of (fixed) parameters to be estimated as

◊ = (�̄Õ, ‡2
Á

, ÊÕ)Õ = (◊Õ
1, ÊÕ)Õ

where ‡2
Á
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i
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non-zero elements of the covariance matrices —

i

, for i = 1, .., N .
We consider the random coe�cients residulas, “

i

, as the vector of missing data (for i =
1, .., N). To estimate ◊ we would need to observe the complete data vector (yÕ, “Õ)Õ.

Following the rules of probability, the log-likelihood of the complete data is given by

logL(y, “; ◊) = logf(y | “; ◊1) + logf(“; Ê) (14)

which is the sum of the conditional log-likelihood of the observed data and the log-
likelihood of the missing data.

Using assumptions (8) and (9) the joint log-likelihood of the vector of missing data can
be written as3
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To derive the likelihood of y = (yÕ
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)Õ given “, we regard the value of the first p
observations (y1, .., y
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) as deterministic.4
In that case, from (6) we can easily derive the conditional expectation and variance of y
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Under the assumption that both the regression error terms, Á
i

, and the random coe�-
cients residuals, “

i

, are independent and normally distributed, it follows that y
i

is normally
3To make notation easier, we write f(“; Ê) = f(“) and f(y | “) instead of f(y | Z, “; ◊1).
4This assumption makes the computation of conditional maximum likelihood estimates much simpler. As

noted in Hamilton (1994), as T gets large, the contribution of the first observations to the total likelihood is
negligible. He also notes that the exact MLE and conditional MLE have the same large-sample distribution
when | „ |< 1, while only the conditional MLE is consistent when | „ |> 1. Anderson and Hsiao (1981, 1982)
argues against the assumption of fixed initial observations in panel with finite T . However, in line with Hsiao
et al (1999), our estimators of the average coe�cients have good properties even when T is relatively small
as demonstrated by means of Monte Carlo experiments.
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distributed and independent of y
j

, for i ”= j. Therefore, the conditional log-likelihood of the
observed data is given by
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Having found an explicit formulation for logf(y | “; ◊1) and logf(“; Ê), we can derive an

expression for the log-likelihood of the complete data by substituting (16) and (15) into (14).
At this point, we can make two important observations. First, ◊1 and Ê are not func-

tionally related, in the sense of Hayashi (2000, Section 7.1). This implies that logf(“; Ê)
does not contain any information about ◊1 and similarly logf(y | “; ◊1) does not contain any
information about Ê.

Second, as stated in Harville (1977), «the ML estimation takes no account of the loss in
degrees of freedom that results from estimating the fixed e�ects» leading to biased estimators.
In the next subsection, we eliminate this problem by using the restricted maximum likelihood
(REML) approach, developed by Russell and Bradley (1958), Anderson and Bancroft (1952)
and Thompson (1962) and described formally by Patterson and Thompson (1971).

3.1 Restricted Likelihood
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Finding an expression for L1i

. Premutiplying both sides of (6) by S
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, we have
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Searle (1978) showed that "it does not matter what matrix S
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of this specification we
use; the di�erentiable part of the log-likelihood is the same for all S
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’s". In other words, the
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Finding an expression for L2i

. Following Patterson and Thompson (1971), we can set
Q

i

= W Õ
i

R≠1
i

since it satisfies cov (S
i

y
i

, Q
i

y
i

) = 0.
After premutiplying both sides of (6) by Q

i

, we have

E (Q
i

y
i

| “
i

) = W Õ
i

R≠1
i

1
W

i

�̄ + Z
i

“
i

2

var (Q
i

y
i

| “
i

) = W Õ
i

R≠1
i

W
i

The log-likelihood of Q
i

y
i

| “
i

is given by

L2i

= logf(Q
i

y
i

| “
i

) = c4 ≠ 1
2 log | W Õ

i

R≠1
i

W
i

| ≠1
2ÁÕ

i

H
i

Á
i

(21)

where H
i

= R≠1
i

W
i

1
W Õ

i

R≠1
i

W
i

2≠1
W Õ

i

R≠1
i

and the Á
i

’s are the regression residuals defined in
(17).
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4 EM-Algorithm
4.1 Generalities
Using equations (15) and (16), the log-likelihood of the complete data can be rewritten as

logL(y, “; ◊) = q
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i=1 {logL(y
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i

; ◊)}
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)}

To obtain unbiased estimates of the variance components, following Patterson and Thomp-
son (1971), we consider the complete-data (restricted) log-likelihood:
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for i = 1, .., N , where logf(y
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; ◊1) has been decomposed as shown in equation (18).
Unfortunately, to obtain closed form solutions of the estimates, we cannot maximize directly
the latter. Instead, by using the EM algorithm we are able to compute iteratively maximum
likelihood estimates. On each iteration of the algorithm, there are two steps. The first
step, called E-step, consists in finding the conditional expected value of the complete-data
log-likelihood. Let ◊(0) be some initial value for ◊. On the first iteration, this step requires
computing
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◊
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; Ê
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In practice, we replace the missing variables, i.e. the random coe�cients residuals (“
i

),
by their conditional expectation given the observed data y

i

and the current fit for ◊.
The second step (M-Step) consists of maximizing Q(◊; ◊(0)) with respect to the parameters

of interest, ◊. That is, we choose ◊(1) such that

Q(◊(1); ◊(0)) Ø Q(◊; ◊(0))

11



Once obtained the updated vector, we go to the E-step and iterate until convergence.
In particular, on the bth iteration, the E-step requires the calculation of

Q(◊; ◊(b≠1)) = E
◊

(b≠1) {logL(y, “; ◊) | y}

while the M-step chooses ◊(b) as

◊(b) = arg max
◊

Q(◊; ◊(b≠1))

More precisely, the estimates can be obtained as follows:

‡2(b)
Ái

= arg max
‡2

Ái

Q1i

�̄(b) = arg max
�̄

q
N

i=1 Q2i

Ê(b)
i

= arg max
Ê

i

Q3i

As noted by Patterson and Thompson (1971) and Harville (1977), no information is lost
by basing inferences for ‡2

Ái
only on Q1i

instead of Q1i

+ Q2i

. Starting from suitable initial
parameter values, the E- and M-steps are repeated until convergence, i.e. until the di�erence

L(y; ◊(b)) ≠ L(y; ◊(b≠1))

changes by an arbitrarily small amount, where L(y; ◊) denotes the likelihood of the observed
data.

4.2 Best Linear Unbiased Prediction
Within the EM algorithm, the random coe�cients residuals, “

i

, are estimated by Best Linear
Unbiased Prediction. Indeed, the E-step substitutes the “

i

’s by their conditional expectation
given the observed data y

i

and the current fit for ◊.
As shown in Appendix A.2, the conditional expectation of “

i

given the data is

“̂
i

= E (“
i

| y
i

) = —
i

Z Õ
i

(Z
i

—
i

Z Õ
i

+ R
i

)≠1 (y
i

≠ W
i

�̄)

=
1
Z Õ

i

R≠1
i

Z
i

+ —≠1
i

2≠1
Z Õ

i

R≠1
i

1
y

i

≠ W
i

�̄
2 (24)
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which is the argument that maximizes the complete data likelihood, as defined in (14), with
respect to “

i

. The conditional variance of “
i

is given by

V
“i = var (“

i

| y
i

) =
1
Z Õ

i

R≠1
i

Z
i

+ —≠1
i

2≠1
(25)

which is equivalent to the inverse of I (“
i

) = Z Õ
i

R≠1
i

Z
i

+—≠1
i

, the observed Fisher information
matrix obtained by taking the second derivative of the log-likelihood of the complete data
with respect to “

i

.
These two formulae have an empirical Bayesian interpretation. Given that “ is random,

the likelihood f(“) can be thought as the “prior” density of “. The posterior distribution of
the latter is Normal with mean and variance given by (24) and (25) respectively.

Moreover, it can be noted from the first equality of (24) that this expression is equivalent
to the predictor of the random coe�cients residuals derived in Lee and Gri�ths (1979) and
Lindley and Smith (1972). Two di�erences emerge. The first concerns the way �̄ and the
other parameters are estimated. The second is that here we allow —

i

”= —
j

, for i ”= j.
Given the current fit for ◊ at iteration b, we get

“̂(b)
i

= E
◊

(b≠1) (“
i

| y
i

) = V (b)
“i

Z Õ
i

R≠1
i(b≠1)

1
y

i

≠ W
i

�̄(b≠1)
2

(26)

where

V (b)
“i

= var
1
“

i

| y
i

, ◊(b≠1)
2

=
1
Z Õ

i

R≠1
i(b≠1)Zi

+ —≠1
i(b≠1)

2≠1
(27)

It is worth noting at this point some di�erences between the EM algorithm and Bayesian
estimation. The EM gives a probability distribution over the unobserved data (i.e. the
random coe�cients residuals, “) together with a point estimate for ◊, the vector of average
coe�cients and variance components of the model. The latter is treated as being random in
a fully Bayesian version.

The advantage compared to a Bayesian approach would be that there is no need to specify
prior means and variances, the choice of which may not be always obvious and can have a
large e�ect on the results when the sample size is small. Instead, within the EM algorithm,
we can start with any initial value. The choice of the latter, di�erently from the prior choice
in a Bayesian framework, does not a�ect the final result. As shown in Dempster, Laird, and
Rubin (1977), the incomplete-data likelihood function L(y; ◊) does not decrease after an EM
iteration, that is L(y; ◊(b)) Ø L(y; ◊(b≠1)) for b = 1, 2, .... Nevertheless, this property does not
guarantee convergence of the EM algorithm since it can get trapped in a local maximum.
In complex case, Pawitan (2001) suggests to try several starting values or to start with a
sensible estimate.
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4.3 E-step
We can now derive the final expression for Q

i

(◊). Detailed computations are shown in
Appendix A.3.

E-step for L1i

. To obtain Q1i

, we take conditional expectation of both sides of (20). Sub-
stituting

E
◊

(b≠1)

1
Á̄Õ

i

R≠1
i

Á̄
i

| y
i

2
= Tr

1
Z Õ

i

R≠1
i

Z
i

V (b)
“i

2
+ ˆ̂ÁÕ

i

R≠1
i

ˆ̂Á
i

where ˆ̂Á
i

= y
i

≠ W
i

�̄(b) ≠ Z
i

“̂(b)
i

, yields

Q1i

= E
◊

(b≠1) (L1i

| y
i

) = c3 ≠ 1
2 log|R

i

| ≠ 1
2 log | W Õ

i

R≠1
i

W
i

|
≠1

2Tr
1
Z Õ

i

R≠1
i

Z
i

V (b)
“i

2
≠ 1

2
ˆ̂ÁÕ

i

R≠1
i

ˆ̂Á
i

(28)

E-step for L2i

. To obtain Q2i

, we take the conditional expectation of (21). Substituting

E
◊

(b≠1) (ÁÕ
i

H
i

Á
i

| y
i

) = Tr
1
Z Õ

i

H
i

Z
i

V (b)
“i

2
+ Á̂Õ

i

H
i

Á̂
i

where Á̂
i

= y
i

≠ W
i

�̄ ≠ Z
i

“̂(b)
i

, yields

Q2i

= E
◊

(b≠1) (L2i

| y
i

) = c4 ≠ 1
2 log | W Õ

i

R≠1
i

W
i

|
≠1

2Tr
1
Z Õ

i

H
i

Z
i

V (b)
“i

2
≠ 1

2 Á̂Õ
i

H
i

Á̂
i

(29)

E-step for logf(“
i

). Substituting

E
◊

(b≠1)

1
“Õ

i

—≠1
i

“
i

| y
i

2
= Tr

1
—≠1

i

V (b)
“i

2
+ “̂(b)Õ

i

—≠1
i

“̂(b)
i

into logf(“
i

), as defined in (15), yields

Q3i

= E
◊

(b≠1) (logf(“
i

) | y
i

) = ≠K

ú

2 log2fi + 1
2 log | —≠1

i

|
≠1

2Tr
1
—≠1

i

V (b)
“i

2
≠ 1

2 “̂(b)Õ

i

—≠1
i

“̂(b)
i

(30)

4.4 M-step
The M-Step consists in maximizing (22) with respect to the parameters of interest, contained
in ◊.
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Estimation of the Average E�ect. An estimate of �̄ can be obtained by maximizing
Q(◊; ◊(b≠1)) with respect to �̄. This reduces to solving

ˆQ(◊; ◊(b≠1))
ˆ�̄

= ˆ

ˆ�̄

A

≠1
2

Nÿ

i=1
Á̂Õ

i

H
i

Á̂
i

B

= 0

The solution is

�̄(b) =
A

Nÿ

i=1
W Õ

i

R≠1
i(b≠1)Wi

B≠1
Nÿ

i=1
W Õ

i

R≠1
i(b≠1)

1
y

i

≠ Z
i

“̂(b)
i

2
(31)

This is equivalent to the GLS estimation of �̄ when the model is given by

yú
i

= W
i

�̄ + Á
i

where yú
i

= y
i

≠ Z
i

“
i

, as if the “
i

’s where known.
Unlike the Newton-Raphson and related methods, the EM algorithm does not automat-

ically provide an estimate of the covariance matrix of the maximum likelihood estimate.
However, in our random coe�cient model, the Fisher information matrix I

1
�̄(B)

2
can be

easily derived by evaluating analytically the second-order derivatives of the incomplete-data
log-likelihood (e.g. logf(y; ◊)) since computations are not tedious. Therefore, the standard
errors of �̄(B) can be computed as the square root of the diagonal elements of

I
1
�̄(B)

2≠1
=

A
Nÿ

i=1
W Õ

i

V ≠1
i(B)Wi

B≠1

(32)

where V
i

= var(y
i

) = Z
i

—
i

Z Õ
i

+ R
i

while B denotes the last iteration of the algorithm.

Estimation of the Variances of the Residual Terms. An estimate of ‡2
Ái

can be derived
by maximizing (22). Because Q3i

is not a function of ‡2
Ái

and given that no information is
lost by neglecting Q2i

(as shown by Patterson and Thompson, 1971), we focus only on Q1i

,
as defined in (28). Substituting R

i

= var (Á
i

) = ‡2
Ái

I
T ≠p

into (28) and equating the first
derivative of the latter with respect to ‡2

Ái
to zero, yields

‡2(b)
Ái

=
ˆ̂ÁÕ

i

ˆ̂Á
i

+ Tr
1
Z Õ

i

Z
i

V (b)
“i

2

T ≠ p ≠ r(W
i

) (33)

where ˆ̂Á
i

= y
i

≠ W
i

�̄(b) ≠ Z
i

“̂(b)
i

. A necessary condition to be satisfied is T > p + rank(W
i

).
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Estimation of the Variance of the Random Coe�cients. Under the Law of Total
Variance, the unconditional variance of “

i

can be written as
—

i

= var (“
i

) = var [E (“
i

| y
i

)] + E [var (“
i

| y
i

)]

= var (“̂
i

) + E (V
“i)

(34)

Therefore, it can be shown that
—̂

i

= “̂
i

“̂Õ
i

+ V
“i (35)

is an unbiased estimator of —
i

.5 Indeed, taking expectation of both sides of (35) and using
(34)

E
1
—̂

i

2
= E (“̂

i

“̂Õ
i

) + E (V
“i) = var (“̂

i

) + E (V
“i) = —

i

It turns out that the EM-REML estimator of the variance-covariance matrix of the random
coe�cients residuals (which is the argument which maximizes (30) with respect to —

i

for
i = 1, ., N) is equal to6

—(b)
i

= “̂(b)
i

“̂(b)Õ

i

+ V (b)
“i

(36)
which can be obtained by substituting the unknown parameters in (35) with their current

fit in the EM algorithm.
We can now compare (36) with the Swamy (1970) and Lee and Gri�ths (1979) estimators

of the random coe�cients residuals’ variance-covariance matrix .
Under the assumption that —

i

= —
j

= —, ’i.j, Swamy (1970) suggested estimating
— = var (“

i

) as

—̂ = 1
N≠1

q
N

i=1
1
Â̂

i

≠ N≠1 q
N

i=1 Â̂
i

2 1
Â̂

i

≠ N≠1 q
N

i=1 Â̂
i

2Õ

≠ 1
N

q
N

i=1 ‡̂2
i

(Z Õ
i

Z
i

)≠1 (37)

where Â̂
i

are obtained by estimating N time series separately by OLS and

‡̂2
i

=

1
y

i

≠ Z
i

Â̂
i

2Õ 1
y

i

≠ Z
i

Â̂
i

2

T ≠ Kú (38)

are the OLS estimated variances of the residual terms. However, this estimator is not nec-
essarily nonnegative definite. Therefore, if that is the case the author suggests considering
only

—̂ = 1
N ≠ 1

Nÿ

i=1

A

Â̂
i

≠ N≠1
Nÿ

i=1
Â̂

i

B A

Â̂
i

≠ N≠1
Nÿ

i=1
Â̂

i

BÕ

(39)

5Note that var (“̂i) = E (“̂i“̂
Õ
i) + E (“̂i) E (“̂Õ

i) = E (“̂i“̂
Õ
i) since E (“̂i) = Eyi (E (“i | yi)) = E (“i) = 0.

6See Appendix A.4, for step by step computations.
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Although not unbiased, the latter estimator is nonnegative definite and consistent when T
tends to infinity.

When the variances are unknown, Lee and Gri�ths (1979) suggest maximizing the joint
likelihood of the random coe�cients and the observed data given in (14) with respect to the
unknown parameters of the model, to get the following iterative solutions of the variance
components:

‡̂2
Ái

=

1ˆ̂ÁÕ
i

ˆ̂Á
i

2

T
and

—̂ = 1
N

Nÿ

i=1
“̂

i

“̂Õ
i

(40)

We have seen that within the EM algorithm the random coe�cients residuals, “
i

, are
considered as missing data and replaced by their conditional expectation given the data,
which yields the BLUP of “

i

. By doing so, the incomplete data problem becomes a complete
data one. At the same time, it has been shown that maximizing the joint likelihood of the
observed data and random coe�cients residuals, as given in (14), with respect to “

i

yields
an estimator “̂

i

which is equivalent to the BLUP of “
i

. This is the approach used by Lee
and Gri�ths. Nevertheless, ignoring that the joint likelihood, f(y

i

, “
i

), is an incomplete data
problem and considering the random coe�cients residuals as parameters to be estimated
comes at a price. Indeed, in the latter case, the expected value of the estimated random
coe�cients residuals variance-covariance matrix, (40), is only equal to the variance of the
conditional expectation of “

i

, i.e. var [E (“
i

| y
i

)], and therefore is a biased estimator of —,
the unconditional variance of “

i

. Instead, by maximizing the condtional expectation of the
complete-data (restricted) likelihood the EM-REML algorithm yields an unbiased estimator
of —. Consequently, our approach has an advantage over both Swamy (1970) and Lee and
Gri�ths (1979) when T is not too large.

4.5 EM-REML Algorithm - Complete Iterations
The EM algorithm steps can be summarised as follows. We start with some initial guess:
Â(0), —

i(0) and R
i(0) = ‡2(0)

Ái
I

T ≠p

. In the simplest case the researcher may wish to set Â(0)

as the pooled OLS while —
i(0) and R

i(0) can be set equal to the identity matrix for all i.
Alternatively, initial estimates which should guarantee faster convergence are the Swamy
GLS estimator for Â(0), (39) for —

i(0) and (38) for the ‡2(0)
Ái

’s. Then, for b = 1, 2, ..

1. First, we compute E
◊

(b≠1) (“
i

| y
i

) and var
1
“

i

| y
i

, ◊(b≠1)
2
:

V (b)
“i

=
1
Z Õ

i

R≠1
i(b≠1)Zi

+ —≠1
i(b≠1)

2≠1
(41)
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“̂(b)
i

= V (b)
“i

Z Õ
i

R≠1
i(b≠1)

1
y

i

≠ W
i

�̄(b≠1)
2

(42)

2. The average coe�cients are given by

�̄(b) =
A

Nÿ

i=1
W Õ

i

R≠1
i(b≠1)Wi

B≠1
Nÿ

i=1
W Õ

i

R≠1
i(b≠1)

1
y

i

≠ Z
i

“̂(b)
i

2
(43)

3. Finally, we can compute, the variance components:

‡2(b)
Ái

=
ˆ̂ÁÕ

i

ˆ̂Á
i

+ Tr
1
Z Õ

i

Z
i

V (b)
“i

2

T ≠ p ≠ r(W
i

) (44)

where ˆ̂Á
i

= y
i

≠ W
i

�̄(b) ≠ Z
i

“̂(b)
i

and

—(b)
i

= V (b)
“i

+ “̂(b)
i

“̂(b)Õ

i

(45)

The iterations continue until the di�erence L(y; ◊(b))≠L(y; ◊(b≠1)) changes only by an arbitrary
small amount, where L(y; ◊) is the likelihood of the observed data. After convergence, the
variance-covariance matrix of �̄(B) (where B denotes the last iteration) can be computed as

ˆvar
1
�̄(B)

2
=

A
Nÿ

i=1
W Õ

i

V ≠1
i(B)Wi

B≠1

(46)

where V
i

= var(y
i

) = Z
i

—
i

Z Õ
i

+ R
i

.

5 Monte-Carlo Results
In this section, we employ Monte-Carlo experiments to examine and compare the small sample
properties of the proposed EM-REML method versus the most commonly used techniques in
panel time series analysis, such as Swamy’s random coe�cient model and the Mean Group
estimation proposed by Pesaran and Smith (1995) with a particular focus on the bias of the
average e�ects and of the variance components of the models.

The data generating process used in the Monte Carlo analysis is given by

y
it

= c
i

+ —
i

x
it

+ „
i

y
it≠1 + Á

it

x
it

= c
x,i

(1 ≠ fl) + flx
it≠1 + u

it

(47)
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where
u

it

≥ N(0, 1)
Á

it

≥ i.i.d.N(0, ‡2
Ái

)
c

x,i

≥ N (1, 1)
(48)

We set fl = 0.6. Once generated, the x
it

are taken as fixed across di�erent replications.
The regression residuals’ standard deviation (‡

Ái) are assumed to be uniformly distributed
in the interval [0.5, 1.5]. The coe�cients di�er randomly across units according to

c
i

= µ + “1i

—
i

= — + “2i

„
i

= „ + “3i

(49)

where Â = (µ, —, „) = (0.2, 0.1, 0.5). Moreover, we assume that “
ji

≥ IN(0, ‡2
“j ,i

), for
j = 1, 2, 3, where

‡2
“j ,i

= var (“
ji

) = (◊
j

x̄
i

)2

with x̄
i

= T ≠1 q
T

t=1 x
it

and ◊
j

≥ ‰(1). We set ◊3 to be the smallest in order to avoid explosive
behaviours. For each i = 1, .., N we eliminate the first 200 observations generated in the
experiments to minimise the e�ect of initial observations.

The results shown in Appendix A.5 are based on 1000 replications. Tables 1 to 3 report
the bias of each coe�cient, the standard errors of such biases and an overall measure of the
bias which is chosen to be the norm of the bias of Â. The root mean square errors (RMSE)
are also given. Regarding the variance components ‡2

“j ,i

, instead of providing the bias of each
estimator7 for i = 1, .., N , we consider the the norm of the bias of the N ◊1 vector ‡̂2

“j
, whose

ith element is ‡̂2
“j ,i

, for j = 1, 2, 3. Similarly, we report the average across units of the RMSE
of the estimators of the variance components ‡̂2

“j,i
.

The EM-REML does quite well even in small samples. It outperforms both Swamy’s
and the Mean Group estimator in term of bias of both the average e�ects and the variance
components.

As shown in Table 4, when T = 10, the bias of autoregressive coe�cients estimated
by EM-REML vary between ≠0.086 and 0.026 as N goes from 10 to 80. On the contrary,
when estimating the model using Swamy GLS method, the bias takes values between ≠0.249
and ≠0.196. The bias is even larger when considering the Mean Group estimator, between
≠0.330 and ≠0.290. The advantages persist when T increases. Results when T = 80 are
reported in Table 6. Focusing again on the autoregressive coe�cient, the bias ranges between
0.014 and 0.001 for the EM-REML case. The bias varies from ≠0.021 to ≠0.005 when using

7In the columns «N-Time Series - MG» of Table 1 to 3, the estimated variances are obtained estimating
N time series separately.
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Swamy’s estimator, and from ≠0.043 and ≠0.037 when using the MG estimator. The RMSE
associated to „

i

is much smaller when estimating the model by EM-REML when T = 10.
This advantage reduces when T = 30. Instead, when T = 80 and N is equal to 10 or 30,
the RMSE is relatively smaller when using Swamy’s estimator. The advantages remain when
comparing the EM-REML approach with the MG estimation. The bias of the variance of
random coe�cients residuals is smaller across di�erent size of T and N when our proposed
approached is used. A smaller bias is sometimes associated to larger RMSE.

In general, these gains can be explained by two factors. First, in most of the experiments
the Swamy’s covariance matrix estimator given in (37) is negative definite. Using (39) instead
of the latter results in a biased estimator. Only when both T and N are large the probability
of (37) being negative definite are small. Although in large samples the di�erences with
the EM-REML reduces, the latter continues to have an advantage. In fact, the EM-REML
variances’ estimator is the most e�cient among the competitors since it accounts for het-
eroskedasticity of the variance of the random coe�cients. Ignoring such heteroskedasticity
yields biased estimators of the variance components.

6 Application
6.1 Introduction
In this section, we demonstrate an application to motivate the use of EM-REML estimation
of dynamic heterogeneous panels.

Reinhart et al. (2003), studying sovereigns’ credit histories since the early nineteenth cen-
tury, argue that an important subgroup of middle-income countries has been “systematically”
a�icted by what they call “debt intolerance”. Even though their debt-to-GDP ratios are con-
siderably lower than those of several high-income countries, these economies are considered
to be riskier and unable to tolerate as much debt.

We corroborate this argument by first showing that the response of sovereign spreads to
changes in government debt (which we also refer to as the “sensitivity” of financial markets
during episodes of debt growth) is highly heterogeneous. It is only statistically significant for
a small sub-group of countries. We ask why this is so by modelling the sensitivity of spreads
as function of macroeconomics fundamentals and a set of explanatory variables which reflect
the history of government debt and economic crises of various forms. The more pervasive the
phenomenon of serial default is (i.e. the weaker the reputation), the stronger the reaction of
financial markets when debt increases. We quantify such reactions.

We depart from the literature on the determinants of sovereign spreads in several ways.8

8See for instance, Akitoby and Stratmann (2008), Bellas et al. (2010), Edwards (1984), Eichengreen and
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First, instead of considering only one group of countries (e.g. emerging markets), we
collect quarterly data for a panel of 17 emerging market economies and 21 developed countries
over 22 years (1994Q1-2015Q4).9 Second, given that we are comparing countries with very
di�erent characteristics, even within group, we allow for heterogeneity rather than pooling.

Finally, the focus of this paper is on understanding which factors determine the additional
risk premium to charge during episodes of debt growth. Assume that sovereign spreads are
a function of debt-to-GDP ratio, a proxy for history of default and other macroeconomic
fundamentals. Rather than looking at how spreads change with respect to one variable while
debt-to-GDP and the remaining covariates are held constant (i.e. partial e�ect), we inves-
tigate which country characteristics significantly a�ect the magnitude of sovereign spreads’
reaction to changes in debt. Studying the sensitivity of financial markets during episode of
debt growth is crucial to understand how emerging markets can borrow at level comparable to
more developed economies without having to pay unsustainable interest rates and therefore
it is important to shed some light on the debt intolerance problem.

6.2 The Empirical Model
Following Edwards (1984), we assume that the spread over U.S. (or German) Treasuries can
be explained by a set of macroeconomic indicators. We focus on real GDP growth, the growth
rate of CPI and the general gross government debt as a percentage of GDP. J.P. Morgan’s
Emerging Markets Bond Index Global (EMBI Global) is our measure of government bond
yields for emerging markets.

Because linear interdependencies may exist among these time series, we can assume they
follow a VAR(p) process. Given that the spreads are observed at a daily frequency, it is
reasonable to think that they react near-instantaneously to shocks and news. Therefore,
considering the variables under study, we can assume that the economy possesses a recursive
structure where spreads are ordered last. The last equation of the recursive system can be
written as

y
it

= „
i

y
it≠1 + xÕ

it

—
i

+ µ
i

+ Á
it

(50)
for i = 1, .., N and t = 1, .., T . We study both the case where government spreads (y

it

)
and debt-to-GDP are in first di�erence and the case where they are not di�erenced. Given
that they lead to similar conclusions, we only report results from the first case.

The number of lags has been selected using AIC and BIC criteria, which give very similar
results.
Mody (2000) and Hilscher and Nosbusch (2010), among others.

9The panel is slightly unbalanced. The individual time observations vary between 60 Æ Ti Æ 87.
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6.3 Parameter Equality Tests
Before estimating the model, we employ some homogeneity tests to show that both the slope
and the intercept parameters are heterogenous across countries. Accounting for such hetero-
geneity is very important. Indeed, as shown in Pesaran and Smith (1995), if the DGP includes
lagged values of the dependent variables among the explanatory variables, as it is in our case,
then pooling give inconsistent and potentially highly misleading estimates of the coe�cients
when the coe�cients di�er across units. This problem does not arise in the static case, where
pooling estimation give unbiased estimates of coe�cient means when the coe�cients di�er
randomly. We then show that also the random coe�cients variances di�er across units. Ac-
counting for such heteroskedastictiy is important when testing hypotheses. In fact, although
consistent, the estimates of the regression coe�cients which ignore heteroskedasticity will
not be e�cient and their standard errors will be biased.

6.3.1 Test for Heterogeneous Coe�cients

To test the null hypothesis H0 : Â1 = .. = Â
N

= Â (i.e. to test whether the coe�cient vectors
Â

i

are constant across units), we can use the following test proposed in Swamy (1970)10:

F = 1
(N ≠ 1)
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K≠ú is the dimension of Â. The Â̂
i

’s can be obtained by estimating N time series sepa-
rately by OLS.

This test is appropriate in our case, since it should be used when T is large relative to N .
For 185 and 2822 degree of freedoms, the F-value that leaves exactly 0.01 of the area

under the F curve in the right tail of the distribution is approximately 1.32.11 Because our
test has a value of 5.1852, we are able to reject the null of homogenous slope and intercept
parameters.

10Swamy propsed F = 1
(N≠1)

qN
i=1 Fi ≥ F (Kú(N ≠ 1), N(T ≠ K

ú)).
11The 1% significance level has been arbitraly chosen.
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6.3.2 Test for Heteroskedastic Variances

Once rejected the hypothesis of homogeneity of the coe�cients across countries, we can test
whether they have heteroskedastic variances or constant variances across units. One way to
proceed is to use the Likelihood Ratio Test defined as

LR = 2
Ë
logL(◊̂) ≠ logL

1
◊̂

r

2È
(52)

where ◊̂ is the unrestricted MLE, obtained estimating the model by EM-REML algorithm
under the assumption of heteroskedastic variances, i.e. “

is

≥ IN(0, —
is

). On the other hand,
◊̂

r

is the restricted MLE obtained from the EM-REML estimation under the assumption of
homoskedastic variances, i.e. “

is

≥ IN(0, —
s

), ’i. When —
i

= — for all i, the iterations
illustrated in Section 4.5 still hold. Equation (45) has to be replaced by

—(b) = 1
N

Nÿ

i=1
V (b)

“i
+ 1

N

Nÿ

i=1
“̂(b)

i

“̂(b)Õ

i

(53)

For a 0.01 level test and with (N ≠ 1) · (p + 1) restrictions ( in our case N = 38 and the
number of lags is p = 1), the critical value for a Chi-squared distribution is less than 112.33.
Given that our LR test has a value of 151.21, we reject the null of homoskedasticity at the
1% level. at the 1% level.

6.4 Comparison
We now compare the results obtained estimating (50) by EM-REML versus Swamy (1970)
and the Mean Group method. In particular, the average e�ects (and their T-test between
parentheses) are shown in the following table:12

The second column of the table reports the results assuming that the random coe�cients
have homoskedastic variances (even though the null hypothesis of homoskedasticity has been
rejected).13

As expected economic growth suggests that a country can “easily” services its existing
debt burden over time and therefore has a negative and significant impact on spreads at the
1% confidence level. The impact is larger when using the Mean Group estimation and the
Swamy estimator, although in the latter case statistical significance only holds at the 10%
level.

12It is known that the main drawback of the EM algorithm is its slow rate of convergence. However, in
this particular application the rate of convergence is pretty fast, about 120 seconds.

13After expressing the coe�cients as function of the explanatory variables, the LR test has a value of
107.1300 . We reject the null of homoskedasticity at the 2% level.
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Table 1: Determinants of sovereign risk: EM, Swamy and Mean Group Estimates.

EM-REML EM-REML2 Swamy MG
Constant 0.002 0.006 0.066 0.089

(0.253) (0.805) (0.944) (1.342)
RGDP growth -0.016úúú -0.016úúú -0.044ú -0.064úúú

(-2.750) (-2.957) (-1.747) (-2.795)
Inflation 0.019úú 0.010 -0.010 -0.012

(2.013) (1.098) (-0.276) (-0.346)
Debt/GDP -0.002 -0.003 0.016 0.025

(-0.587) (-1.020) (0.727) (1.223)
Lag Dep V. 0.068úúú 0.090úú 0.055 0.040

(2.950) (2.520) (1.462) (1.208)
T-test between parentheses. The second column reports results when ignoring heteroskedasticity. Simbols

úúú, úú, and ú denotes significance at 1%, 5% and 10% respectively.

Only when accounting for heteroskedasticity in the random coe�cients residuals using
the EM-REML approach, spreads are found to be positively correlated with inflation rate.
Indeed, high growth rates of inflation may reflect the inability of a government to finance
its current budgetary expenses through taxes or further debt issuance. Moreover, the EM-
REML estimation gives more predictive power to the autoregressive components compared
to the other models. The coe�cients on debt-to-GDP are not significant in all the four cases.
This is in contrast with the literature on the determinants of sovereign spreads which find a
significant positive correlation between spreads and debt. This di�erence can be explained by
the fact that (i) we consider quarterly data rather than annual, (ii) we study both developed
and emerging economies rather than just the latter, (iii) our model includes lagged values of
the dependent variable and finally (iv) our estimation accounts for heterogeneity rather than
pooling. The implications of neglected heterogeneity and dynamics are studied in Haque
et al. (2000). Focusing on cross-country savings regressions, the authors find that ignoring
di�erences across countries can lead to overestimating the influence of certain factors on
the private savings rate. At the same time, one can obtain highly significant, but spurious,
nonlinear e�ects for some of the potential determinants.

6.5 EM-REML Estimation and Shrinkage.
As shown in Section 4.2, the unobserved idiosyncratic components of the random coe�cients,
“

i

, are estimated by Best Linear Unbiased Prediction. This choice arises naturally in the EM
algorithm and has the advantage over estimating N time series separately because BLUPs are
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shrinkage estimators. Indeed, they tend to be closer to zero than the estimated e�ects would
be if they were computed by treating a random coe�cient as if it were fixed. For instance,
Maddala et al. (1997), estimating short-run and long-run elasticities of residential demand for
electricity and natural gas, find that individual heterogeneous state estimates are di�cult to
interpret and have the wrong signs. Therefore, they suggest shrinkage estimators (instead of
heterogeneous or homogeneous parameter estimates) if one is interested in obtaining elasticity
estimates for each state since these give more reliable results and are superior for prediction
purposes.

Focusing on the relationship between debt and spreads, the individual coe�cients Â̂
ik

=
Â̂

k

+ “̂
ik

and their 95% confidence bands are shown below.

The sensitivity of the spread with respect to debt-to-GDP ratio is statistically significant
only for a handful of countries, among which Argentina, Brazil and Mexico. The coe�cients
for Hungary and Russia are also positive but not significant. Surprisingly, Malaysia, Greece
and Italy show a negative and significant correlation between the first-di�erence of spread
and debt.14 One could argue, that the latter two countries have benefited from joining the

14This is not the case when spreads and debt are not in first-di�erence. The estimated coe�cients get close
to zero and not statistically significant
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eurozone. By doing so, their government and public sector agencies were allowed to increase
the external obligations at rates which were lower than those they would have paid as single
unit.15

It is interesting to compare the results described above with those obtained following
Lee and Gri�ths (1979), while using Swamy (1970) estimator of the random coe�cients
covariance. In that case the BLU predictions are given by

Ẫ
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= Â̂
GLS

+ —̂Z Õ
i

(Z
i

—̂Z Õ
i

+ ‡̂2
i

I
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)≠1(y
i

≠ Z
i
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) (54)

where —̂ has been defined in (39), Â̂
i

are the individual OLS estimates and Â̂
GLS

is the
Swamy’s GLS estimator. The variance-covariance matrix of Ẫ
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is given by
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where

A
i

=
1
—̂≠1 + ‡̂≠2

i

Z Õ
i

Z
i

2≠1
—̂≠1

In this particular application —̂ is not positive-definite, therefore we use the asymptotic
estimator given by (39).

As before, we focus on the relationship between spreads and debt:

15One could test this hypothesis by allowing for time-varying coe�cients. We leave open the question for
future research.
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In this application, individual estimates obtained using Lee and Gri�ths’ approach are
close to the OLS estimates of the individual coe�cients. This can be disadvantageous in
those cases where as argued in Maddala et al. (1997) estimating N heterogeneous time series
yield inaccurate estimates and even wrong signs for the coe�cients.

Comparing the two figures, it emerges that estimating the parameters of the model by
EM-REML results into random coe�cients residuals estimates which are shrunk to zero in a
more e�ective way. The advantage of this approach is that it exploits the joint likelihood of
the observed and unobserved data and allows for heteroskedasticity of the random coe�cients
residuals.

6.6 The Sensitivity of Spreads to Debt
We now explore why the sensitivity of spreads to debt di�ers significantly across countries
by modelling the latter as a function of selected explanatory variables. We ask which factors
influence financial markets decision when evaluating the credit worthiness of the borrower
and setting interest rate during episodes of government debt growth.
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First, using Reinhart and Rogo� (2011) historical time series on country’s creditworthiness
and financial turmoil, we model the random coe�cients as function of a common constant
and the percentage of years (between 1980 and 2010) in default or restructuring domestic
and external debt. Results are shown below.

Table 2: Determinants of sensitivity of spreads: EM-REML Estimates.

const % y Dom Def % y Ext Def
c

i

0.000 0.151 -0.007
(0.023) (0.228) (-0.043)

—(gdp)
i

-0.014úú -0.550 -0.088
(-2.375) (-1.431) (-0.888)

—(cpi)
i

0.021úú -0.383 0.067
(2.039) (-1.016) (0.549)

—(debt)
i

-0.003 0.520úúú 0.158úú

(-0.981) (2.986) (2.217)
„

i

0.091úúú -0.574 0.025
(3.403) (-1.568) (0.152)

T-test between parentheses. Simbols úúú, úú, and ú denotes significance at 1%, 5% and 10% respectively.

A 1% increase in the percentage of year in default or restructuring domestic debt is
associated with a 0.52% increase in the sensitivity of spreads to debt. History of repayment
plays an important role. “Bad” reputation leads to high sensitivity of spreads to debt. As
a consequence, relatively small increase in debt-to-GDP may lead to unsustainable interest
rates which cannot be tolerated.

The above analysis is robust when augmenting the regression with additional explanatory
variables. In particular, we consider the percentage of years (from 1980 to 2010) where a
country faces an annual inflation rate of 20 percent or higher and the percentage of years
(1980-2010) in which an annual depreciation versus the US dollar (or another relevant anchor
currency) of 15 percent or more occurs.16 We also includes measures of macroeconomic
fundamentals such as the average (and standard deviation of) real GDP growth, rate of
currency depreciation, inflation rate and Current Account to GDP growth. The average (first
di�erence of) general gross government debt to GDP ratio and its standard deviation are used
as a measure of sudden increases in debt’s level. In Table ??, we focus on the coe�cients
equation corresponding to the sensitivity of spreads to debt and report results from using
di�erent specifications.17 Standard deviations over the sample period under considerations

16See Reinhart and Rogo� (2009) for more details.
17Other factors such as political instability and the composition of debt are currently being tested.
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Table 3: Determinants of sensitivity of spreads to government debt: EM-REML Estimates.

(1) (2) (3) (4) (5) (6) (7)
Constant -0.003 -0.004 0.008 0.003 0.001 -0.005 -0.019

(-0.981) (-0.795) (0.505) (0.225) (0.038) (-0.263) (-1.029)
% y Curr Crisis 0.011

(0.128)
% y Infl Crisis -0.02

(-0.235)
% y Dom Def 0.52 0.646 0.653 0.478 0.577 0.541

(2.986) (3.151) (3.167) (2.452) (2.841) (2.615)
% y Ext Def 0.158 0.168 0.161 0.182 0.19 0.196

(2.217) (2.135) (2.189) (2.63) (2.743) (2.828)
Volatility FX -0.002 -0.004 -0.004 -0.002 0.002

(-0.736) (-1.052) (-0.828) (-0.464) (0.301)
Volatility Debt/GDP 0.007 0.006 0.005 0.004

(1.085) (0.86) (0.708) (0.605)
Volatility Infl -0.009 -0.013 -0.005

(-0.901) (-1.245) (-0.438)
Volatility RGDP 0.007 0.018 0.014

(0.738) (1.296) (0.998)
Volatility CA/GDP -0.005 -0.006

(-0.982) (-1.096)
T-test between parentheses.

are used as measure of volatility. Including averages rather than volatility leads to very
similar conclusions. Therefore, we do not report them.

At least three conclusions can be drawn. First, a «good» reputation in financial markets
is essential. The percentage of years in defaults or restructuring have a statistically and eco-
nomically significant e�ect on the sensitivity of spreads across all the di�erent specifications.
Domestic defaults have a larger economic impact than external ones. Second, country-specific
macroeconomic indicators do not play any significant role in explaining the reactions of in-
vestors to an increase in debt. This suggests that markets decisions during episodes of debt
growth may be driven by sentiments (as defined by Eichengreen and Mody, 2000) rather
than fundamentals. At the same time, we have seen that this «irrational exuberance» or
«excessive» reaction is usually associated with countries with a weak history of repayment.
Finally, contrary to the literature which emphasizes the role of volatility of macroeconomic
aggregates in explaining sovereign credit risks18, we find no evidence that such variables a�ect

18See for example, Eaton and Gersovitz (1981), Catao and Kapur (2006) and Hilscher and Nosbuch (2010).
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markets when calculating the additional risk premium to charge in response to an increase
in debt.

To conclude, while it is common in the literature to find that certain macroeconomic fun-
damentals are significant predictors of sovereign spreads, we show that they are not significant
determinants of the sensitivity of spreads to changes in sovereign debt.

7 Conclusion
We propose estimating dynamic panel model with random coe�cients by combining the
EM algorithm, popularised by Dempster et al. (1977) with Restricted Maximum Likelihood
(REML) approach, developed by Patterson and Thompson (1971). This approach leads to
tractable closed form solutions. The unobserved error terms of the random coe�cients are
estimated by BLUP and their probability distributions are also derived. The main advantage
of the EM-REML algorithm is that it yields unbiased estimators of the variance components
that are positive definite. As a consequence, as shown in the Monte Carlo analysis, this
approach has good properties even in small samples. Second, the proposed method allows
for heteroskedastic random coe�cients and thus can be seen as a generalization of the one-way
error components model where both the variances of the random e�ects and the regression
disturbances have heteroskedasticity of unknown form. Ignoring heteroskedasticity when it
is present will still result in consistent estimates of the regression coe�cients. Nevertheless,
these estimates will not be e�cient and their standard errors will be biased therefore a�ecting
the validity of hypothesis testing. An empirical application is also presented. We investigates
what causes the sensitivity of spreads to di�er significantly across countries by modelling the
latter as a function of selected explanatory variables. We ask which factors influence financial
markets decision when evaluating the credit worthiness of the borrower and setting the risk
premium during episodes of government debt growth. We find that while country-specific
macroeconomic indicators do not play any significant role in explaining the sensitivity of
spreads to an increase in debt, history of repayment is crucial. “Bad” reputation leads to
higher sensitivity of spreads to debt. As a consequence, countries who have defaulted in the
past may find it di�cult to finance current expenditures by issuing new debt since relatively
small increase in debt-to-GDP may lead to a raise in interest rates which may be di�cult to
tolerate.
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A Appendix
A.1 Matrix Computations for REML
A.1.1 A Choice for S

i

The Projection Matrix M
i

. One plausible choice for such an S
i

, is

M
i

= I ≠ W
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W
i

)≠1 W Õ
i

(56)

Indeed, M
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is symmetric and idempotent.
As noted by Searle (1978), its canonical form under orthogonal similarity is given by
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where U is an orthogonal matrix. Searle (1978) defines A to be the first T ≠p ≠Kúl columns
of U Õ. It follows that M
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by A, we get M
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Since U Õ is orthogonal and non-singular, AÕ has full rank and AÕW
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= 0. As stated in Searle
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Since AÕ has full row rank and R
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A generalization of M
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. As shown in Lemma 2.1 of Searle (1978), any linear combination
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satisfying P
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Relationship between M
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and P
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. Using (56) and the fact that P
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From (62) and (63), we can establish P
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A.1.2 Some Lemmas from Searle (1978)

Lemma 1. It can be shown that
S

i

= F ÕAÕ (66)
for some non-singular F Õ. Indeed, we have seen that S
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= JM
i

where M
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= AAÕ. Therefore,
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= JAAÕ. Hence, let F Õ = JA, from which it follows that S
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Lemma 2. Using Lemma 1 and (65), it follows that
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Lemma 3. Recall that if A = (m ◊ m), B = (m ◊ n),C = (n ◊ m) and D is a (n ◊ n)
matrix, then

det

C
A B
C D

D

= | D | · | A ≠ BD≠1C | if D nonsingular

= | A | · | D ≠ CA≠1B | if A nonsingular

(68)
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Using this property of the determinant, we can show that
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| R
i

| ·
-----

AÕA AÕW
i

W Õ
i

A W Õ
i

W
i

----- =| AÕR
i

A | · | W Õ
i

R
i

W
i

≠ W Õ
i

R
i

A (AÕR
i

A)≠1 AÕR
i

W
i

|

Using AÕA = I and AÕW
i

= 0 and equation (65), we get

| R
i

|| W Õ
i

W
i

|=| AÕR
i

A | · | W Õ
i

R
i

W
i

≠ W Õ
i

R
i

PR
i

W
i

|

Substituting (60) into the latter equation and then using the property of determinants,
det(AB) = det(A) · det(B), yields (69).

Lemma 4. Using the definition S
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= F ÕAÕ, it can be shown that
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A.1.3 Finding an expression for L1i
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S Õ
i

)≠1 S
i

(y
i

≠ Z
i

“
i

) (71)

Using (69) and (70), we have

log | S
i

R
i

S Õ
i

|= c + log|R
i

| + log | W Õ
i

R≠1
i

W
i

| (72)

where c includes the terms that do not involve the parameters of interest.
Furthermore, using Lemma 2, we get

(y
i

≠ Z
i

“
i

)Õ S Õ
i

(S
i

R
i

S Õ
i

)≠1 S
i

(y
i

≠ Z
i

“
i

) = (y
i

≠ Z
i

“
i

)Õ P
i

(y
i

≠ Z
i

“
i

)

=
3

y
i

≠ W
i

ˆ̄� ≠ Z
i

“
i

4Õ
R≠1

i

3
y

i

≠ W
i

ˆ̄� ≠ Z
i

“
i

4

(73)
Substituting (72) and (73) into (71) yields (20).
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Proof of Equation (73). Let19 ˆ̄� be the argument that minimizes ÁÕ
i

R≠1
i

Á
i

, where Á
i

=
y

i

≠ W
i

�̄ ≠ Z
i

“
i

and R
i

= var (Á
i

). The solution to the problem is given by

ˆ̄� =
1
W Õ

i

R≠1
i

W
i

2≠1
W Õ

i

R≠1
i

(y
i

≠ Z
i

“
i

)

We can now show that

y
i

≠ W
i

ˆ̄� ≠ Z
i

“
i

= y
i

≠ W
i

1
W Õ

i

R≠1
i

W
i

2≠1
W Õ

i

R≠1
i

(y
i

≠ Z
i

“
i

) ≠ Z
i

“
i

= R
i

P
i

y
i

≠ R
i

P
i

Z
i

“
i

Therefore, using (61) and after a few computations, we get
3

y
i

≠ W
i

ˆ̄� ≠ Z
i

“
i

4Õ
R≠1

i

3
y

i

≠ W
i

ˆ̄� ≠ Z
i

“
i

4
= (yÕ

i

P
i

R
i

≠ “Õ
i

Z Õ
i

P
i

R
i

) R≠1
i

(R
i

P
i

y
i

≠ R
i

P
i

Z
i

“
i

)
= yÕ

i

P
i

y
i

≠ yÕ
i

P
i

Z
i

“
i

≠ “Õ
i

Z Õ
i

P
i

y
i

+ “Õ
i

Z Õ
i

P
i

Z
i

“
i

= (y
i

≠ Z
i

“
i

)Õ P
i

(y
i

≠ Z
i

“
i

)

A.1.4 Finding an expression for L2i

.

The Choice of Q
i

. It can be shown that Q
i

= W Õ
i

R≠1
i

is a plausible choice. We first
compute the covariance conditional on “

i

, to then show that the unconditional covariance is
equal to zero, i.e. cov (S

i

y
i

, Q
i

y
i

) = 0.

cov (S
i

y
i

, Q
i

y
i

| “
i

) = E (S
i

y
i

yÕ
i

QÕ
i

| “
i

) ≠ E (S
i

y
i

| “
i

) E (yÕ
i

QÕ
i

| “
i

)
= S

i

E (y
i

yÕ
i

| “
i

) QÕ
i

≠ (S
i

Z
i

“
i

)
1
�̄ÕW Õ

i

+ “Õ
i

Z Õ
i

2
R≠1

i

W
i

(74)

where E (S
i

y
i

| “
i

) = S
i

Z
i

“
i

since S
i

W
i

= 0.
Substituting

S
i

E (y
i

yÕ
i

| “
i

) QÕ
i

= S
i

var (Á
i

) QÕ
i

= S
i

R
i

R≠1
i

W
i

= S
i

W
i

= 0

and
(S

i

Z
i

“
i

)
1
�̄ÕW Õ

i

+ “Õ
i

Z Õ
i

2
R≠1

i

W
i

= S
i

Z
i

“
i

�̄ÕW Õ
i

R≠1
i

W
i

+S
i

Z
i

“
i

“Õ
i

Z Õ
i

R≠1
i

W
i

into (74), we get
cov (S

i

y
i

, Q
i

y
i

| “
i

) = ≠S
i

Z
i

“
i

�̄ÕW Õ
i

R≠1
i

W
i

≠S
i

Z
i

“
i

“Õ
i

Z Õ
i

R≠1
i

W
i

(75)

19To make notation easier we focus on Á

Õ
iR

≠1
i Ái instead of

qN
i=1 Á

Õ
iR

≠1
i Ái.
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Using the Law of Total Covariance20, the unconditional covariance can be obtained from

cov (S
i

y
i

, Q
i

y
i

) = E [cov (S
i

y
i

, Q
i

y
i

| “
i

)]
+cov (E (S

i

y
i

| “
i

) , E (Q
i

y
i

| “
i

)) (76)

Taking expectation of both sides of (75), we get

E [cov (S
i

y
i

, Q
i

y
i

| “
i

)] = ≠S
i

Z
i

—
i

Z Õ
i

R≠1
i

W
i

(77)

since “
i

≥ N(0, —
i

). Moreover,

cov (E (S
i

y
i

| “
i

) , E (Q
i

y
i

| “
i

)) = E
5
S

i

Z
i

“
i

1
W Õ

i

R≠1
i

W
i

�̄ + W Õ
i

R≠1
i

Z
i

“
i

2Õ
6

≠E [E (S
i

y
i

)] E
Ë
E (Q

i

y
i

)Õ
È

= S
i

Z
i

—
i

Z Õ
i

R≠1
i

W
i

(78)

Therefore, substituting (77) and (78) into (76) we can show that cov (S
i

y
i

, Q
i

y
i

) = 0.

A.2 BLUP
Assume that y

i

and “
i

are jointly normally distributed.
The conditional expectation of “

i

given the data is

“̂
i

= E (“
i

| y
i

) = E(“
i

) + cov(“
i

, y
i

) [var(y
i

)]≠1 [y
i

≠ E(y
i

)]
= cÕV ≠1

y

1
y

i

≠ W
i

�̄
2 (79)

where by assumption E(“
i

) = 0.
The conditional variance of “

i

is

var (“
i

| y
i

) = var(“
i

) ≠ cov(“
i

, y
i

) [var(y
i

)]≠1 · cov(y
i

, “
i

)
= var(“

i

) ≠ cÕV ≠1
y

c

Henderson (1984, Chap. 5), showed that

1. the BLP is unbiased:

E (“̂
i

) = E
Ë
cÕV ≠1

y

(y
i

≠ W
i

�̄
È

= cÕV ≠1
y

Ë
E(y

i

) ≠ W
i

�̄
È

= 0 = E(“
i

)
(80)

since E(y
i

) = W
i

�̄.
20If X, Y and Z are random variables, then cov (X, Y ) = E [cov (Y, X | Z)] + cov (E (X | Z) , E (Y | Z))
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2. The variance of “̂
i

is var (“̂
i

) = var
Ë
cÕV ≠1

y

(y
i

≠ W
i

�̄)
È

= cÕV ≠1
y

c.

3. The covariance between “̂
i

and “
i

is cÕV ≠1
y

cov (“̃
i

, “
i

) = var (“̂
i

), from which it follows
that var (“̂

i

≠ “
i

) = var (“̂
i

) ≠ var (“
i

).

4. Finally, the BLP maximizes the correlation between “̂
i

and “
i

.

If E(y
i

) = W
i

�̄ is not known (since �̄ is not known), we need to consider the best linear
unbiased prediction (BLUP). However, in the EM-algorithm we substitute �̄ by its guess
�̄(0). As stated in Henderson (1984), if E(“

i

) = 0, the BLUP is BLP with �̄(0) substituted
for �̄. Furthermore, under normality, BLUP has the same properties as BLP.

A.2.1 Computations

From (6), we know that
E(y

i

) = W
i

�̄ (81)

V
y

= var(y
i

) = var
1
W

i

�̄ + Z
i

“
i

+ Á
i

2
= Z

i

—
i

Z Õ
i

+ R
i

(82)

cÕ = cov(“
i

, y
i

) = E (“
i

yÕ
i

) = —
i

Z Õ
i

(83)
If Z

i

includes lagged dependent variables among the regressors, then the above results hold
only if we assume that the first p observations (y1, .., y

p

) are deterministic and therefore are
used as presample.

Substituting (82) and (83) into (79) yields

“̂
i

= E (“
i

| y
i

) = —
i

Z Õ
i

(Z
i

—
i

Z Õ
i

+ R
i

)≠1 (y
i

≠ W
i

�̄)

As suggested in Pawitan (2001) and Henderson (1963), using a simple matrix identity we
can write

cÕV ≠1
y

= —
i

Z Õ
i

[Z
i

—
i

Z Õ
i

+ R
i

]≠1 =
;1

Z Õ
i

R≠1
i

Z
i

+ —≠1
i

2≠1 1
Z Õ

i

R≠1
i

Z
i

+ —≠1
i

2<
·

·—
i

Z Õ
i

[Z
i

—
i

Z Õ
i

+ R
i

]≠1

=
1
Z Õ

i

R≠1
i

Z
i

+ —≠1
i

2≠1
· Z Õ

i

R≠1
i

(84)

Using these results, the conditional expectation of “
i

given the data is

E (“
i

| y
i

) =
1
Z Õ

i

R≠1
i

Z
i

+ —≠1
i

2≠1
· Z Õ

i

R≠1
i

1
y

i

≠ W
i

�̄
2

(85)

The conditional variance is given by
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var (“
i

| y
i

) = var(“
i

) ≠ cov(“
i

, y
i

) [var(y
i

)]≠1 · cov(y
i

, “
i

)
= —

i

≠ —
i

Z Õ
i

[Z
i

—
i

Z Õ
i

+ R
i

]≠1 Z
i

—
i

(86)

Using result (84) the previous formula can be simplified as follows:

var (“
i

| y
i

) = —
i

≠ —
i

Z Õ
i

[Z
i

—
i

Z Õ
i

+ R
i

]≠1 Z
i

—
i

=
1
Z Õ

i

R≠1
i

Z
i

+ —≠1
i

2≠1

A.2.2 BLUP as maximizer of Complete Data likelihood

logL(y, “; ◊) = logf(y | “; ◊1) + logf(“; Ê)
= +1

2
q

N

i=1 log | —≠1
i

| ≠1
2

q
N

i=1 “Õ
i

—≠1
i

“
i

≠1
2

q
N

i=1 log | R
i

| ≠1
2

q
N

i=1 ÁÕ
i

R≠1
i

Á
i

where Á
i

= y
i

≠ W
i

�̄ ≠ Z
i

“
i

. Taking the first derivative with respect to “
i

and equating to
zero yields 1

Z Õ
i

R≠1
i

Z
i

+ —≠1
i

2
“

i

= Z Õ
i

R≠1
i

1
y

i

≠ W
i

�̄
2

The observed Fisher information can be obtained by taking the second derivative of the
log-likelihood of the complete data with respect to “

i

:
ˆlogL

ˆ“iˆ“

Õ
i

= ≠—≠1
i

≠ Z Õ
i

R≠1
i

Z
i

The observed Fisher information is equal to

I (“
i

) = Z Õ
i

R≠1
i

Z
i

+ —≠1
i

A.3 E-Step
E-step for L2i

. As suggested in Pawitan (2001)

E
◊

(b≠1) (ÁÕ
i

H
i

Á
i

| y
i

) = Tr [H
i

E
◊

(b≠1) (Á
i

ÁÕ
i

| y
i

)] (87)

To find E
◊

(b≠1) (Á
i

ÁÕ
i

| y
i

), recall that for a random variable X, var(X) = E(XX Õ)≠E(X)E(X Õ)
from which it follows E(XX Õ) = V + µµÕ. It is clear now that

E
◊

(b≠1) (Á
i

ÁÕ
i

| y
i

) = V
Ái + Á̂

i

Á̂Õ
i

(88)

where
Á̂

i

= E
◊

(b≠1) (Á
i

| y
i

) = E
◊

(b≠1)

1
y

i

≠ W
i

�̄ ≠ Z
i

“
i

| y
i

2

= y
i

≠ W
i

�̄ ≠ Z
i

“̂(b)
i
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and
V

Ái = var
1
Á

i

| y
i

; ◊(b≠1)
2

= var
1
y

i

≠ W
i

�̄ ≠ Z
i

“
i

| y
i

, ◊(b≠1)
2

= Z
i

V (b)
“i

Z Õ
i

(89)

with “̂(b)
i

= E
◊

(b≠1) (“
i

| y
i

) and V (b)
“i

= var
1
“

i

| y
i

, ◊(b≠1)
2
.

Substituting (89) into (88) yields

E
◊

(b≠1) (Á
i

ÁÕ
i

| y
i

) = Z
i

V (b)
“i

Z Õ
i

+ Á̂
i

Á̂Õ
i

Substituting the latter into (87)

E
◊

(b≠1) (ÁÕ
i

H
i

Á
i

| y
i

) = Tr
1
H

i

Z
i

V (b)
“i

Z Õ
i

2
+ Tr (H

i

Á̂
i

Á̂Õ
i

) (90)

Furthermore, using the properties of trace, we have

E
◊

(b≠1) (ÁÕ
i

H
i

Á
i

| y
i

) = Tr
1
Z Õ

i

H
i

Z
i

V (b)
“i

2
+ Á̂Õ

i

H
i

Á̂
i

We can now write

Q2i

= E
◊

(b≠1) (L2i

| y
i

) = c4 ≠ 1
2 log | W Õ

i

R≠1
i

W
i

|
≠1

2Tr
1
Z Õ

i

H
i

Z
i

V (b)
“i

2
≠ 1

2 Á̂Õ
i

H
i

Á̂
i

A.4 Estimation of —
i

An estimator of —
i

can be obtained by maximizing (30) with respect to —
i

. Before proceed-
ing, we report a few results of matrices di�erentiation shown in Lutkepohl (1996).

1. X (m ◊ m) nonsingular, a, b (m ◊ 1):21

ˆaÕX≠1b

ˆX
= ≠(X≠1)ÕabÕ(X≠1)Õ (91)

2. X (m ◊ m) nonsingular, A, B (m ◊ m):22

ˆtr (AX≠1B)
ˆX

= ≠
1
X≠1BAX≠1

2Õ
(92)

3. X (m ◊ m), det(X) > 0:
ˆln | X |

ˆX
= (X Õ)≠1 (93)

21Lutkepohl (1996, pag.177 eq. 10).
22Lutkepohl (1996, pag.179 eq. 23)
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It follows that
ˆQ3i

ˆ—i
= ≠—≠1

i

+ —≠1
i

V (b)
“i

—≠1
i

+ —≠1
i

“̂(b)
i

“̂(b)Õ

i

—≠1
i

= 0
(93) (92) (91)

which implies that
—≠1

i

= —≠1
i

V (b)
“i

—≠1
i

+ —≠1
i

“̂(b)
i

“̂(b)Õ

i

—≠1
i

Pre-multiplying and post-multiplying both sides by —
i

, we get

—(b)
i

= V (b)
“i

+ “̂(b)
i

“̂(b)Õ

i

(94)

Unbiased Estimator. Using the Law of Total Variance, the unconditional variance of “
i

can be written as

—
i

= var (“
i

) = var [E (“
i

| y
i

)] + E [var (“
i

| y
i

)]
= var (“̂

i

) + E (V
“i)

(95)

Therefore, it can be shown that

—̂
i

= “̂
i

“̂Õ
i

+ V
“i (96)

is an unbiased estimator of —
i

. Indeed, taking expectation of both sides of (96)23 and using
(95)

E
1
—̂

i

2
= E (“̂

i

“̂Õ
i

) + E (V
“i) = var (“̂

i

) + E (V
“i) = —

i

Another way to prove the latter is shown below:

E
1
—̂

i

2
= E (“̂

i

“̂Õ
i

) + E (V
“i)

= E
;

cÕV ≠1
yi

1
y

i

≠ W
i

�̄
2 1

y
i

≠ W
i

�̄
2Õ

V ≠1
yi

c
<

+ —
i

≠ cÕV ≠1
yi

c

= cÕV ≠1
yi

c + —
i

≠ cÕV ≠1
yi

c = —
i

A.5 Monte Carlo Analysis

23Note that
var (“̃i) = E (“̃i“̃

Õ
i) + E (“̃i) E (“̃Õ

i) = E (“̃i“̃
Õ
i)

since E (“̃i) = Eyi (E (“i | yi)) = E (“i) = 0.
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Table 4: EM-REML, Swamy and Mean Group Estimators Properties when T = 10

EM-REML EM-REML (homos) Swamy N-Time Series - MG

T=10 / N 10 30 80 10 30 80 10 30 80 10 30 80

Bias (ci) 0.033 0.004 0.008 -0.005 -0.053 -0.068 0.104 0.119 0.119 0.140 0.174 0.191

se {Bias (ci)} 0.024 0.010 0.006 0.019 0.008 0.005 0.028 0.015 0.011 0.036 0.026 0.016

Bias (—i) 0.011 0.000 0.007 0.003 -0.020 -0.016 0.033 0.009 0.011 0.042 0.014 0.012

se {Bias (—i)} 0.016 0.008 0.004 0.012 0.006 0.003 0.014 0.009 0.005 0.017 0.012 0.007

Bias („i) -0.086 0.009 0.026 -0.019 0.127 0.153 -0.249 -0.218 -0.196 -0.330 -0.312 -0.290

se {Bias („i)} 0.013 0.008 0.004 0.011 0.008 0.004 0.012 0.007 0.005 0.012 0.007 0.004

Î Bias (Â) Î 0.093 0.009 0.028 0.020 0.139 0.168 0.272 0.248 0.230 0.361 0.357 0.348

RMSE (ci) 0.240 0.098 0.064 0.193 0.096 0.083 0.293 0.187 0.158 0.381 0.309 0.249

RMSE (—i) 0.155 0.081 0.043 0.120 0.066 0.035 0.142 0.087 0.052 0.177 0.119 0.074

RMSE („i) 0.154 0.081 0.051 0.109 0.150 0.158 0.276 0.228 0.202 0.351 0.319 0.293

Î Bias (var (“1)) Î 0.247 0.234 0.303 0.098 0.476 0.633 3.967 9.375 14.976 5.716 16.276 19.694

Î Bias (var (“2)) Î 0.252 0.196 0.274 0.056 0.273 0.367 0.998 1.619 2.514 1.222 1.754 3.166

Î Bias (var (“3)) Î 0.096 0.184 0.334 0.013 0.057 0.070 0.378 0.644 1.034 0.491 0.794 1.260

av (RMSE {var (“1)}) 0.342 0.174 0.169 0.033 0.088 0.071 1.723 1.997 1.825 2.226 3.662 3.070

av (RMSE {var (“2)}) 0.342 0.173 0.169 0.021 0.051 0.041 0.352 0.316 0.302 0.483 0.396 0.434

av (RMSE {var (“3)}) 0.125 0.140 0.144 0.013 0.016 0.010 0.134 0.124 0.122 0.189 0.173 0.175

% Neg. Def. 0.970 0.930 0.890

Table 5: EM-REML, Swamy and Mean Group Estimators Properties when T = 30

EM-REML EM-REML_homos Swamy N_TS-MG

T=30 / N 10 30 80 10 30 80 10 30 80 10 30 80

Bias (ci) 0.005 0.004 0.009 -0.006 -0.007 -0.006 0.035 0.024 0.015 0.069 0.056 0.047

se {Bias (ci)} 0.010 0.006 0.004 0.009 0.005 0.003 0.012 0.006 0.004 0.015 0.009 0.006

Bias (—i) 0.023 0.006 0.001 0.013 -0.001 -0.004 0.018 0.007 0.001 0.021 0.012 0.008

se {Bias (—i)} 0.009 0.005 0.003 0.008 0.005 0.002 0.008 0.005 0.002 0.008 0.005 0.003

Bias („i) -0.001 -0.008 -0.004 0.012 0.008 0.013 -0.049 -0.049 -0.030 -0.096 -0.101 -0.101

se {Bias („i)} 0.007 0.004 0.002 0.006 0.003 0.002 0.006 0.003 0.003 0.006 0.003 0.002

Î Bias (Â) Î 0.023 0.011 0.010 0.018 0.011 0.015 0.063 0.055 0.034 0.120 0.116 0.112

RMSE (ci) 0.103 0.057 0.039 0.090 0.048 0.034 0.123 0.067 0.043 0.163 0.105 0.072

RMSE (—i) 0.093 0.052 0.030 0.077 0.047 0.024 0.081 0.050 0.025 0.087 0.056 0.029

RMSE („i) 0.070 0.041 0.025 0.064 0.035 0.025 0.075 0.060 0.042 0.111 0.106 0.103

Î Bias (var (“1)) Î 0.102 0.140 0.137 0.251 0.395 0.438 0.720 1.139 0.974 0.564 1.356 1.299

Î Bias (var (“2)) Î 0.082 0.184 0.244 0.137 0.224 0.243 0.171 0.300 0.309 0.133 0.262 0.320

Î Bias (var (“3)) Î 0.037 0.070 0.103 0.034 0.055 0.064 0.073 0.128 0.110 0.073 0.142 0.227

av (RMSE {var (“1)}) 0.158 0.162 0.128 0.083 0.073 0.049 0.298 0.253 0.129 0.205 0.279 0.167

av (RMSE {var (“2)}) 0.157 0.163 0.130 0.049 0.043 0.028 0.070 0.062 0.039 0.043 0.050 0.038

av (RMSE {var (“3)}) 0.041 0.048 0.045 0.014 0.012 0.009 0.027 0.027 0.017 0.024 0.027 0.026

% Neg. Def. 0.930 0.740 0.380
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Table 6: EM-REML, Swamy and Mean Group Estimators Properties when T = 80

EM-REML EM-REML_homos Swamy N_TS-MG

T=80 / N 10 30 80 10 30 80 10 30 80 10 30 80

Bias (ci) 0.000 0.005 0.003 0.002 0.001 -0.004 0.018 0.009 0.000 0.042 0.028 0.016

se {Bias (ci)} 0.008 0.005 0.002 0.009 0.004 0.003 0.012 0.005 0.003 0.015 0.005 0.004

Bias (—i) 0.000 0.002 -0.002 0.004 0.003 -0.001 0.005 0.004 -0.001 0.005 0.007 0.002

se {Bias (—i)} 0.008 0.004 0.002 0.009 0.003 0.002 0.009 0.003 0.002 0.009 0.003 0.002

Bias („i) 0.014 0.001 0.001 -0.004 0.005 0.001 -0.021 -0.006 -0.005 -0.043 -0.037 -0.038

se {Bias („i)} 0.009 0.003 0.002 0.005 0.002 0.002 0.005 0.002 0.002 0.005 0.002 0.002

Î Bias (Â) Î 0.014 0.005 0.003 0.006 0.006 0.004 0.028 0.012 0.005 0.060 0.047 0.041

RMSE (ci) 0.078 0.046 0.025 0.088 0.040 0.027 0.121 0.047 0.029 0.152 0.061 0.041

RMSE (—i) 0.084 0.038 0.023 0.093 0.035 0.024 0.091 0.035 0.023 0.093 0.035 0.023

RMSE („i) 0.088 0.026 0.018 0.053 0.022 0.016 0.055 0.023 0.018 0.064 0.042 0.041

Î Bias (var (“1)) Î 0.083 0.039 0.235 0.433 0.152 0.704 0.521 0.190 0.677 0.207 0.101 0.413

Î Bias (var (“2)) Î 0.178 0.074 0.167 0.237 0.082 0.396 0.243 0.089 0.396 0.281 0.095 0.443

Î Bias (var (“3)) Î 0.041 0.022 0.040 0.059 0.020 0.097 0.059 0.025 0.097 0.063 0.036 0.104

av (RMSE {var (“1)}) 0.251 0.059 0.120 0.141 0.029 0.079 0.238 0.044 0.081 0.090 0.022 0.053

av (RMSE {var (“2)}) 0.256 0.060 0.118 0.082 0.016 0.045 0.094 0.019 0.045 0.089 0.017 0.050

av (RMSE {var (“3)}) 0.047 0.018 0.025 0.021 0.005 0.011 0.022 0.006 0.011 0.020 0.007 0.012

% Neg. Def. 0.740 0.320 0.000
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