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Abstract

Recent developments in quantum computing have revived interest in the notion of information
as a foundational principle in physics. It has been suggested that information provides a means of
interpreting quantum theory and a means of understanding the role of entropy in thermodynam-
ics. The thesis presents a critical examination of these ideas, and contrasts the use of Shannon
information with the concept of ’active information’ introduced by Bohm and Hiley.

We look at certain thought experiments based upon the 'delayed choice’ and 'quantum eraser’
interference experiments, which present a complementarity between information gathered from a
quantum measurement and interference effects. It has been argued that these experiments show
the Bohm interpretation of quantum theory is untenable. We demonstrate that these experiments
depend critically upon the assumption that a quantum optics device can operate as a measuring
device, and show that, in the context of these experiments, it cannot be consistently understood
in this way. By contrast, we then show how the notion of ’active information’ in the Bohm
interpretation provides a coherent explanation of the phenomena shown in these experiments.

We then examine the relationship between information and entropy. The thought experiment
connecting these two quantities is the Szilard Engine version of Maxwell’s Demon, and it has been
suggested that quantum measurement plays a key role in this. We provide the first complete
description of the operation of the Szilard Engine as a quantum system. This enables us to
demonstrate that the role of quantum measurement suggested is incorrect, and further, that the
use of information theory to resolve Szilard’s paradox is both unnecessary and insufficient. Finally
we show that, if the concept of ’active information’ is extended to cover thermal density matrices,

then many of the conceptual problems raised by this paradox appear to be resolved.
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Chapter 1

Introduction

In recent years there has been a significant interest in the idea of information as fundamental
principle in physics|Whe83, Whe90, Zur90b, Per93, FS95, Frio8, Deu97, Zei99, St090, St092, Sto97,
amongst others]. While much of this interest has been driven by the developments in quantum
computation|Gru99, CNO1] the issues that are addressed are old ones. In particular, it has been

suggested that:

1. Information theory must be introduced into physical theories at the same fundamental level

as concepts such as energy;
2. Information theory provides a resolution to the measurement problem in quantum mechanics;

3. Thermodynamic entropy is equivalent to information, and that information theory is essential

to exorcising Maxwell’s Demon.

The concept of information used in these suggestions is essentially that introduced by Shannon[Sha48|
and it’s generalisation to quantum theory by Schumacher[Sch95]. This concept was originally con-
cerned with the use of different signals to communicate messages, and the capacity of physical
systems to carry these signals, and is a largely static property of statistical ensembles.

A completely different concept of information was introduced by Bohm and Hiley[BH93] in the
context of Bohm’s interpretation of quantum theory[Boh52a, Boh52b]. This concept was much
more dynamic, as it concerned the manner in which an individual system evolves.

In this thesis we will be examining some of these relationships between information, thermo-
dynamic entropy, and quantum theory. We will use information to refer to Shannon-Schumacher
information, and active information to refer to Bohm and Hiley’s concept. We will not be examining
the ideas of Fisher information[Fis25, Fri88, Fri89, FS95, Fri98, Reg98], although it is interesting to
note that the terms that result from applying this to quantum theory bear a remarkable equivalence
to the quantum potential term in the Bohm approach. Similarly, we will not be considering the
recently introduced idea of total information due to Bruckner and Zeilinger[BZ99, BZ00a, BZ00b).

We will also leave aside the concept of algorithmic information[Ben82, Zur89a, Zur89b, Zur90a,
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Cav93, Cav94], as this concept has only been defined within the context of classical Universal Tur-
ing Machines. To be meaningful for quantum systems this concept must be extended to classify
quantum bit strings operated upon by a Universal Quantum Computer, a task which presents
some considerable difficulties.

The structure of the thesis is as follows.

In Chapter 2 we will briefly review Shannon and Schumacher information, and the problems for
interpreting information in a quantum measurement. Chapter 3 will introduce Bohm and Hiley’s
concept of active information, and will examine recent thought experiments[ESSW92] based upon
the use of ’one-bit detectors’ which criticises this interpretation. We will show that this criticism
is unfounded.

Chapter 4 introduces the relationship between entropy and information, by reviewing the dis-
cussion of Szilard’s Engine[Szi29]. This thought experiment has been used to suggest that an

intelligent being (a Maxwell Demon) could reduce the entropy of a system by performing measure-



Finally in Chapter 10 we will re-examine the concept of active information to see if it has any rel-
evance to thermodynamics. We will find that recent developments of the Bohm interpretation[BH0O]
suggest that the problems surrounding the Szilard Engine may be viewed in a new light using the
concept of active information. The fundamental conflict in interpreting thermodynamics is be-
tween the statistical ensemble description, and the state of the individual system. We will show
that, by extending Bohm'’s interpretation to include the quantum mechanical density matrix we
can remove this conflict in a manner that is not available to classical statistical mechanics and
does not appear to be available to other interpretations of quantum theory.

With regard to the three issues raised above, therefore, we will have found that:

1. The introduction of information as a fundamental principle in physics certainly provides a
useful heuristic device. However, to be fruitful a much wider concept of information than

Shannon’s seems to be required, such as that provided by Bohm and Hiley;

2. The use of Shannon-Schumacher information in a physical theory must presume the existence
of a well defined measurement procedure. Until a measurement can be certain to have taken
place, no information can be gained. Information theoretic attempts to resolve the quantum
measurement problem are therefore essentially circular unless they use a notion of information

that goes beyond Shannon and Schumacher;

3. Although Shannon-Schumacher information and Gibbs-Von Neumann entropy are formally
similar they apply to distinctly different concepts. As an information processing system must
be implemented upon a physical system, it is bound by physical laws and in an appropriate
limit they become related by Landauer’s Principle. Even in this limit, though, the different

nature of the concepts persists.
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Chapter 2

Information and Measurement

In this Chapter we will briefly review the concept of Shannon information[Sha48, SW49] and it’s
application to quantum theory.

Section 1 reviews the classical notion of information introduced by Shannon and it’s key fea-
tures. Section 2 looks at the application of Shannon information to the outcomes of quantum
measurements[Kul59, Per93, Gru99, CN01]. We will be assuming that a quantum measurement
is a well defined process. The Shannon measure may be generalised to Schumacher information,
but the interpretation of some of the quantities that are constructed from such a generalisation
remains unclear. Finally in Section 3 we will consider an attempt by [AC97] to use the quantum

information measures to resolve the measurement problem, and show that this fails.

2.1 Shannon Information

Shannon information was original defined to solve the problem of the most efficient coding of a
set of signals[SW49, Sha48]. We suppose that there is a source of signals (or sender) who will
transmit a given message a with probability P,. The message will be represented by a bit string
(an ordered series of 1’s and 0’s). The receiver will have a decoder that will convert the bit string
back into it’s corresponding message. Shannon’s theorem shows that the mean length of the bit

strings can be compressed to a size

Isn == palog, pa (2.1)

without introducing the possibility of errors in the decoded message!. This quantity Igy, is
called the Shannon information of the source. As it refers to the length in bits, per message, into
which the messages can be compressed, then a communication channel that transmits Ig; bits per

message has a signal capacity of Igp.

1This assumes there is no noise during transmission.
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This concept of information has no relationship to the meaning or significance that the sender
or the receiver attributes to the message itself. The information content of a particular signal,
—log, pa, is simply an expression of how likely, or unlikely the message is of being sent. The less
likely the occurrence of a message, the greater information it conveys. In the limit where a message
is certain to occur (P, = 1), then no information is conveyed by it, as the receiver would have
known in advance that it was going to be received. An extremely rare message conveys a great deal
of information as it tells the receiver that a very unlikely state of affairs exists. In many respects,
the Shannon information of the message can be regarded as measuring the ’surprise’ the receiver
feels on reading the message!

The most important properties of the Shannon information, however, are expressed in terms
of conditional I(«|B) and mutual I(« : () information, where two variables a and [ are being
considered. The probability of the particular values of & = a and 8 = b simultaneously occurring

is given by P(a,b), and the joint information is therefore
I(a, 3) = = > P(a,b)log, P(a,b)
a,b

From the joint probability distribution P(a,b) we construct the separate probability distributions

Pla) = zb:P(a,b)

Pb) = Zajp(a,b)
the conditional probabilities

Palp) = Plg‘g’bi’)

P(bla) = P]g?;?
and the correlation

P = g

This leads to the information terms?

I(a) = —ZbP(a,b)logQP(a)

1(8) = —%;P(a,b)loggP(b)
I(alp) = —;P(a,b)logzP(alb)
I(Bla) = —Z;P(a,b)loggP(bla)
Ia:B) = “

- ZP(a, b)log, P(a : b)
a,b

2These terms may di[ed by the minus sign from the definitions given elsewhere. The Shannon information as

given represents the ignorance about the exact state of the system.
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which are related by

=
2
=
I
=~
L
=
|
=
=

and obey the inequalities

I(a,8) 2 I(a) =0

I(0,8) > I(alB)
min (), I(8)] > —I(a:B) >0

0

Y

We can interpret these relationships, and the a and [ variables, as representing communication

between two people, or as the knowledge a single person has of the state of a physical system.

2.1.1 Communication

If 3 represents the signal states that the sender transmits, and « represents the outcomes of the
receivers attempt to decode the message, then P(a|b) represents the reliability of the transmission
and decoding®.

The receiver initially estimates the probability of a particular signal being transmitted as P(b),
and so has information I(3). After decoding, the receiver has found the state a. Presumably
knowing the reliability of the communication channel, she may now use Bayes’s rule to re-estimate
the probability of the transmitted signals

P(alb)P(b)

P(bla) = Pla)

On receiving the result a, therefore, the receiver has information
I(Bla) = P(bla)log, P(bla)
b
about the signal sent. Her information gain, is

Al (B) = I(Bla) = 1(B) (2.2)

Over an ensemble of such signals, the result a will occur with probability P(a). The mean infor-

mation possessed by the receiver is then
{I(Bla)) =D P(a)I(Bla) = I(Blo)

So the conditional information I(3|«) represents the average information the receiver possesses

about the signal state, given her knowledge of the received state, while the term I((]a) represents

3There are many ways in which the decoding may be unreliable. The communication channel may be noisy, the

decoding mechanism may not be optimally designed, and the signal states may be overlapping in phase space
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the information the receiver possesses given a specific outcome a. The mean information gain
(AI(Bla)) = Y P(a)AL(B) = I(a: f)

The mutual information is the gain in information the receiver has about the signal sent. It can be
shown that, given that the sender is also aware of the reliability of the transmission and decoding
process, that the conditional information I(«|3) represents the knowledge the sender has about
the signal the receiver actually receives. The mutual information can then be regarded as the
symmetric function expressing the information both receiver and sender possess in common, or
equivalently, the correlation between the state of the sender and the state of the receiver.

If the transmission and decoding processes are completely reliable, then the particular receiver
states of a will be in a one-to-one correspondence with the signal states of 8, with probabilities

P(alb) = 1. This leads to

) = I(B)
1(Bla) = I(a]8) = 0
Ia:0) = —-I(a)

It should be remembered that the information measure of complete certainty is zero, and it increases
as the uncertainty, or ignorance of the state, increases. In the case of a reliable transmission and
decoding, the receiver will end with perfect knowledge of the signal state, and the sender and

receiver will be maximally correlated.

2.1.2 Measurements

The relationships above have been derived in the context of the information capacity of a com-
munication channel. However, it can also be applied to the process of detecting and estimating a
state of a system. The variable 8 will represent the a priori probabilities that the system is in a
particular state. The observer performs a measurement upon the system, obtaining the result in
variable a.

The initial states do not have to represent an exact state of the system. If we start by considering
a classical system with a single coordinate x and it’s conjugate momentum p,,, the different states
of 3 represent a partitioning of the phase space of the system into separate regions b, and the
probabilities P(b) that the system is located within a particular partition. The measurement
corresponds to dividing the phase space into a partitioning, represented by the different states of
a and locating in which of the measurement partitions the system is located.

We now find that the conditional information represents the improved knowledge the observer
has of the initial state of the system (given the outcome of the measurement) and the mutual
information, as before, represents the average gain in information about the initial state.

Note that if the measurement is not well chosen, it may convey no information about the original

partitioning. Suppose the partitioning of § represents separating the phase space into the regions

16



pr > 0 and p, < 0, with equal probability of being found in either (P(p, > 0) = P(p, < 0) = %
and a uniform distribution within each region. Now we perform a measurement upon the position

of the particle, separating the phase space into the regions z > 0 and = < 0. The probabilities are

P(p, > Oz > 0) = 220 >000.20) %
P(p, <0z > 0) = D20 <OB(e<0) %

A measurement based upon the partition x > 0 and z < 0 would produce no gain in information.
However, it is always possible to a define a finer grained initial partitioning (such as dividing the
phase space into the four quadrants of the z,p, axes) for which the measurement increases the
information available, and in this case would provide complete information about the location of
the original partition.

If the measurement partition of « coincides with the partition of 8 then the maximum informa-
tion about 8 will be gained from the measurement. In the limit, the partition becomes the finely
grained partition where each point (p,,z) in the phase space is represented with the probability
density function I(p,, ).

In classical mechanics the observer can, in principle, perfectly distinguish all the different states,
and make the maximum information gain from a measurement. However, in practice, some finite

partitioning of the phase space is used, owing to the physical limitations of measuring devices.

2.2 Quantum Information

When attempting to transfer the concept of information to quantum systems, the situation becomes
significantly more complex. We will now review the principal ways in which the measure and
meaning of information is modified in quantum theory.

The first subsection will be concerned with the generalisation of Shannon’s theorem, on com-
munication capacities. This produces the Schumacher quantum information measure. Subsection
2 will consider the Shannon information gain from making measurements upon a quantum sys-
tem. Subsection 3 reviews the quantities that have proposed as the generalisation of the relative
and conditional information measures, in the way that Schumacher information generalises the
Shannon information. These quantities have properties which make it difficult to interpret their

meaning.

2.2.1 Quantum Communication Capacity

The primary definition of information came from Shannon’s Theorem, on the minimum size of the

communication channel, in mean bits per signal, necessary to faithfully transmit a signal in the
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absence of noise. The theorem was generalised to quantum theory by Schumacher[Sch95, JS94].
Suppose that the sender wishes to use the quantum states ¥, to represent messages, and a

given message will occur with probability p,. We will refer to I[p] as the Shannon information of

the source. The quantum coding theorem demonstrates that the minimum size of Hilbert space H

that can be used as a communication channel without introducing errors is

Dim(H) = 25!
where
Pa = |¢a> <wa‘
P = Zpapa
Slpl = —Trlplog, o] (2.3)

By analogy to the representation of messages in bits, a Hilbert space of dimension 2 is defined as
having a capacity of 1 gbit, and a Hilbert space of dimension n, a capacity of log, n gbits.

If the signal states are all mutually orthogonal

PaPa’ = 6aa’pz

then
S[p] = - Zpa log, pa

If this is the case, then the receiver can, in principle, perform a quantum measurement to determine
exactly which of the signal states was used. This will provide an information gain of exactly the
Shannon information of the source.

However, what if the signal states are not orthogonal? If this is the case, then[WehT78]

Slpl < I[p]

It would appear that the signals can be sent, without error, down a smaller dimension of Hilbert
space. Unfortunately, as the signal states are not orthogonal, they cannot be unambiguously

determined. We must now see how much information can be extracted from this.

2.2.2 Information Gain

To gain information, the receiver must perform a measurement upon the system. The most general
form of a measurement used in quantum information is the Positive Operator Valued Measure
(POVM)[BGL95]. This differs from the more familiar von Neumann measurement, which involves

the set of projection operators |a) (a| for which (a |a') = §4q and

Y la)(a] =1
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is the identity operator. The probability of obtaining outcome a, from an initial state p is given
by

pa ="Tr[pla) (a]]
This is not the most general way of obtaining a probability measure from the density matrix. To

produce a set of outcomes a, with probabilities p, according to the formula
Pa = Tr[pAq]

the conditions upon the set of operators A, are that they be positive, so that
(w]Aq |w) =0

for all states |w), and that the set of operators sums to the identity

ZAa:I

For example, consider a spin—% system, with spin-up and spin-down states |0),|1) respectively and

the superpositions |u) = F% (10y + 1)) |v) = F% (|0y — |1)) then the following operators

A= L) (0]
4 = o
A5 = o) Gl
A= L) Ol

form a POVM. A given POVM can be implemented in many different ways*, but will typically
require an auxiliary system whose state will be changed by the measurement.
The signal states pp occur with probability p,. Using the same expression for information gain

as in Equation 2.2 so we can now apply Bayes’s rule as before, with
p(alb) = Tr[Aups)

to give the probability, on finding outcome a, that the original signal state was b
p()Tr [Aapy]
p(a)

We now define the relative information, information gain and mutual information as before

p(bla) = (2.4)

I1(Bla)

S P(bla) log, P(to)
b

AL() = I(3la)— 1(5)

I(@l)) = 32 P@IBla) = T(Fla)

(AI(Bla)) = > Pla)AL(B)=1(a:p)

4The example given here could be implemented by, on each run of the experiment, a random choice of whether
to measure the 0-1 basis or u-v basis. This will require a correlation to a second system which generates the random
choice. In general a POVM will be implemented by a von Neumann measurement on an extended Hilbert space of

the system and an auxiliary[Per90, Per93].
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It can be shown that the maximum gain in Shannon information, known as the Kholevo bound,

for the receiver is the Schumacher information[Kho73, HIST96, SW97, Kho98].
I[a: B] < S[p]

So, although by using non-orthogonal states the messages can be compressed into a smaller volume,

the information that can be retrieved by the receiver is reduced by exactly the same amount.

2.2.3 Quantum Information Quantities

The information quantity that results from a measurement is still defined in terms of Shannon
information on the measurement outcomes. This depends upon the particular measurement that is
performed. We would like to generalise the joint, conditional, and mutual information to quantum

systems, and to preserve the relationships:

S[A|B] = S|AB]- S|B]
S[B|A] = S|AB]- S[A]
S[A:B] = S[AB]- S[A] - S[B

This generalisation[AC95, Gru99, SW00, CNO01, and references therein] is defined from the joint

density matrix of two quantum systems p4p.

pa = Trplpas]

pp = Tralpan]
S[AB] = —Tr[paplog;pap]
S[A] = —Trlpaplogy(pa ®1p)]

= —Tr[palogapa]
S[B] = —Trlpaplogs(14 @ pp)]

= —Tr[pplogapp]

S[A|B] = —Tr[paplog, pajs]
S[B|A] = —Tr[paplog, psja]
S[A:B] = —Tr[paplog,pa:s] (2.5)
where the matrices®
paip = lim [Pix/}; (1a®pp) /"

5Where all the density matrices commute, then

pap = pap(pa®lp)”’

pas = pap(pa®pp)”’

in close analogy to the classical probability functions
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ppjia = lim [Pix/g (pa® 1B)i1/n]

[
pap = lim [pi/g (pa ® pp)T ”"]n

However, these quantities display significantly different properties from Shannon information.
The most significant result is that it is possible for S[A] > S[AB] or S[B] > S[AB]. This allows
S[A|B], S[B|A] < 0 and —S[A : B] > S[AB] which cannot happen for classical correlations, and
does not happen for the Shannon information quantities that come from a quantum measurement.
A negative conditional information S[A|B] < 0, for example, would appear to imply that, given
perfect knowledge of the state of B, one has ’greater than perfect’ knowledge of the state of A!

The clearest example of this is for the entangled state of two spin—% particles, with up and

down states represented by 0 and 1:

1
¥ =35 (00) + 1))
This is a pure state, which has
S[AB] =0
The subsystem density matrices are
1
pa = 5(10) O +[1) (L])
1
pe = 5(10) (0] +]1) (1))
so that
S[A]=8[B] =1

The conditional quantum information is then
S[A|B] = S[B|A] = —1

The significance that can be attributed to such a negative conditional information is a matter
of some debate[AC95, AC97, SW00]. We have noted above that the Shannon information of a
measurement on a quantum system does not show such a property. However, the Kholevo bound
would appear to tell us that each of the quantities S[A], S[B] and S[AB] can be the Shannon
information gained from a suitable measurement of the system.

The partial resolution of this problem lies in the fact that, for quantum systems, there exist
joint measurements which cannot be decomposed into separate measurements upon individual sys-
tems. These joint measurements may yield more information than can be obtained for separable
measurements even in the absence of entanglement[GP99, Mas00, BDFT99, Mar01]. In terms
of measurements the quantities of S[AB], S[A] and S[B] may refer to information gains from
mutually incompatible experimental arrangements. There is correspondingly no single experimen-
tal arrangement for which the resulting Shannon information will produce a negative conditional

information.
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2.2.4 Measurement

We have so far reviewed the existence of the various quantities that are associated with information
in a quantum system. However, we have not really considered what we mean by the information
gained from a quantum measurement.

In a classical system, the most general consideration is to assume a space of states (whether dis-
crete digital messages or a continuous distribution over a phase space) and probability distribution
over those states.

There are two questions that may be asked of such a system:
1. What is the probability distribution?
2. What is the state of a given system?

If we wish to determine the probability distribution, the means of doing this is to measure
the state of a large number of equivalently prepared systems, and as the number of experiments
increases the relative frequencies of the states approaches the probability distribution. So the
measurement procedure to determine the state of the given system is the same as that used to
determine the probability distribution.

For a quantum system, we must assume a Hilbert space of states, and a probability distribution

over those states. Ideally we would like to ask the same two questions:
1. What is the probability distribution?
2. What is the state of a given system?

However, we find we a problem. The complete statistical properties of the system are given by the

density matrix
pP= Papa
a

where the state p, occurs with probability p,. We can determine the value of this density matrix
by an informationally complete measurementS. However, this measurement does not necessarily
tell us the states p, or p,. The reason for this is that the quantum density matrix does not have a
unique decomposition. A given density matrix p could have been constructed in an infinite number

of ways. For example, the following ensembles defined upon a Spin—% system

Ensemble 1

p1 10) (0]

pa = 1) (1]

6 An informationally complete measurement is one whose statistical outcomes uniquely defines the density matrix.

Such a measurement can only be performed using a POVM[BGL95, Chapter V]. A single experiment, naturally,
cannot reveal the state of the density matrix. It is only in the limit of an infinite number of experiments the relative

frequencies of the outcomes uniquely identifies the density matrix.
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_ 1

P = D)

_ 1

P2 = D)

Ensemble 2

pa = |u) (u]
pe = |v) (v]

_ 1

pa = B

_ 1

pPB = B)

Ensemble 3

pr = 10) (0]
p2 = |1) (1]
pa = |u) (u]
pe = |v) (v]

_ 1

P = 1

_ 1

P2 = 1

_ 1

pa = 1

1

PB = Z

with |u) = F% (10y + 1)) |v) = F% (]0y — |1)), all produce the density matrix p = 31, where I is
the identity.

The informationally complete measurement will reveal the value of an unknown density matrix,
but will not even reveal the probability distribution of the states that compose the density matrix,
unless the different p, states happen to be orthogonal, and so form the basis which diagonalises
the density matrix (and even in this case, an observer who is ignorant of the fact that the signal
states have this property will not be able to discover it).

To answer the second question it is necessary to have some a priori knowledge of the ’signal
states’ p,. In the absence of a priori knowledge, the quantum information gain from a measurement
has no objective significance. Consider a measurement in the basis |0) (0], |1) (1]. With Ensemble
1, the measurement reveals the actual state of the system. With Ensemble 2, the measurement
causes a wavefunction collapse, the outcome of which tells us nothing of original state of the system,
and destroys all record of it. Without the knowledge of which ensemble we were performing the
measurement upon we are unable to know how to interpret the outcome of the measurement.

This differs from the classical measurement situation. In a classical measurement we can refine

our partitioning of phase space, until in the limit we obtain the probability density over the whole
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of the phase space. If the classical observer starts assuming an incorrect probability distribution for
the states, he can discover the fact. By refining his measurement and repeatedly applying Bayes’s
rule, the initially subjective assessment of the probability density asymptotically approaches the
actual probability density. The initially subjective character of the information eventually becomes
an objective property of the ensemble.

In a quantum system, there is no measurement able to distinguish between different distribu-
tions that combine to form the same density matrix. The observer will never be able to determine
which of the ensembles was the actual one. If he has assumed the correct signal states p,, then he
may discover if his probabilities are incorrect. However, if his initial assumption about the signal
states going into the density matrix are incorrect, he may never discover this.

It might be argued that the complete absence of a priori knowledge is equivalent to an isotropic
distribution over the Bloch sphere’. An observer using such a distribution could certainly devise a
optimal measurement, in terms of information gain[Dav78]. Although some information might be
gained, the a posteriori probabilities, calculated from Bayes’s rule, would be distributions over the
Bloch sphere, conditional upon the outcome of the experiments. However, the outcomes of such a
measurement would be same for each of the three ensembles above. The a posteriori probabilities
continue to represent an assessment of the observer’s knowledge, rather than a property of the
ensemble of the systems.

On the other hand, we are not at liberty to argue that only the density matrix is of significance.
If we are in possession of a priori knowledge of the states composing the density matrix, we will
construct very different measurements to optimise our information gain, depending upon that
knowledge. The optimal measurement for Ensemble 2 is of the projectors |u) (u| and |v) (v|, while
for Ensemble 3 a POVM must be used involving all four projectors. All of these differ from the

optimal measurement for an isotropic distribution®.

2.3 Quantum Measurement

So far we have made a critical assumption in analysing the information gained from measurements,
namely that measurements have well defined outcomes, and that we have a clear understanding
of when and how a measurement has occurred. This is, of course, a deeply controversial aspect of
the interpretation of quantum theory. Information theory has, occasionally, been applied to the
problem[DG73, Chapter III, for example], but usually this is only in the context of a predefined
theory of measurement (thus, in [DG73] the use of information theory is justified within the context

of the Many-World Interpretation).

"The Bloch sphere represents a pure state in a Hilbert space of dimension 2 by a point on a unit sphere.
8Recent work[BZ99, BZ00a, Hal00, BZ00b] by Bruckner and Zeilinger criticises the use of Shannon-Schumacher

information measures in quantum theory, on similar grounds. While their suggested replacement of total information
has some interesting properties, it appears to be concerned exclusively with the density matrix itself, rather than
the states that are combined to construct the density matrix.
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In [AC97], Cerf and Adami argue that the properties of the quantum information relationships
in Equation 2.5 can, in themselves, be used to resolve the measurement problem. We will now
examine the problems in their argument.

Let us start by considering a measurement of a quantum system in a statistical mixture of

orthogonal states |¢,,) (¢, | with statistical weights w,,, so that
p= an |¥hn) (Un|

In this case, the density matrix is actually constructed from the [¢,,) states, rather than some
other mixture leading to the same statistical state. We now introduce a measuring device, initially

in the state |¢p) and an interaction between system and device

This interaction leads the joint density matrix to evolve from

Pn @ |po) (¢o

to

We can now consistently interpret the density matrix p’ as a statistical mixture of the states [, ¢,,)
occurring with probability w,,. In particular, when the measuring device is in the particular state
|thn) then the observed system is in the state |¢,,). The interaction in 2.6 above is the correct one
to measure the quantity defined by the |¢,,) states.

Unfortunately, the linearity of quantum evolution now leads us to the measurement problem
when the initial state of the system is not initial in a mixture of eigenstates of the observable.

Supposing the initial state is

|\I/> = Zan |wn>

. 2 . .
(where, for later convenience, we choose |, |” = w,,), then the measurement interaction leads to a

state

This is a pure state, not a statistical mixture. Such an entangled superposition of states cannot
be interpreted as being in a mixture of states, as there are observable consequences of interference
between the states in the superposition.

To complete the measurement it is necessary that some form of non-unitary projection takes
place, where the state [T ®) is replaced by a statistical mixture of the |¢, ¢, ) states, each occurring

randomly with probability |an|2 = wy,.
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Information From the point of view of information theory, the density matrix in Equation 2.7

has a information content of

Si[¢] = Si[Y] = Silo,¥] = = walogyw, =S
Silply] = Si[ylg] = 0
Silg:] = =5

The conditional information being zero indicates that, given the knowledge of the state of the
measuring apparatus we have perfect knowledge of the state of the measured system, and the
mutual information indicates a maximum level of correlation between the two systems.

For the superposition in Equation 2.8, the information content is

Salp ] = 0
Salo] = Sa[v] = So
Salolv] = Sa2[Y|¢] = —So
Salp ] = —25

We now have situation where the knowledge of the state of the combined system is perfect, while,
apparently, the knowledge of the individual systems is completely unknown. This leads to a
negative conditional information - which has no classical meaning, and a correlation that is twice
the maximum that can be achieved with classical systems.

[AC95] do not attempt to interpret these terms. Instead they now introduce a third system,

that ’observes’ the measuring device. If we represent this by |£), this leads to the state
(D) = > [ndnén) (2.9)

Now, it would appear we have simply added to the problem as our third system is part of the
superposition. However, by generalising the quantum information terms to three systems, [AC95]

derive the quantities

S3[€] = Ss[¢] = S3[¢, 9] = wylogy wy = So

Ssl¢lg] = S3[8l§] = 0
S3[€ - ¢ —So

This shows the same relationships between the second ’observer’ and the measuring device as we
saw initially between the measuring device and the observed system when the system was in a
statistical state. This essentially leads [AC95] to believe they can interpret the situation described
after the second interaction as a classical correlation between the observer and the measuring
device.

[AC95] do not claim that they have introduced a non-unitary wavefunction collapse, nor do they

believe they are using a ’Many-Worlds’ interpretation. What has happened is that, by considering
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only two, out of three, subsystems in the superposition, they have traced over the third system

(the original, "observed’ system), and produced a density matrix

which has the same form as the classically correlated density matrix. They argue that the origi-
nal, fundamentally quantum systems |¥) are always unobservable, and it is only the correlations
between ourselves (systems |Z)) and our measuring devices (systems |®)) that are accessible to us.

They argue that there is no need for a wavefunction collapse to occur to introduce a probabilistic
uncertainty into the unitary evolution of the Schrédinger equation. It is the occurrence of the

negative conditional information

S3[Y|, €] = —So

that introduces the randomness to quantum measurements. This negative conditional information
allows the @, = system to have an uncertainty (non-zero information), even while the overall state

has no uncertainty

Ss[ih, ¢, &] = Sa[Y[@, £] + Ss(¢, ] = 0

The basic problem with this argument is the assumption that when we have an apparently
classically correlated density matrix, such as in Equation 2.7 above, we can automatically interpret
it as actually being a classical correlation. In fact, we can only do this if we know that it is actually
constructed from a statistical ensemble of correlated states. As we have seen above, the quantum
density matrix does not have a unique decomposition and so could have been constructed out of
many different ensembles. These ensembles may be constructed with superpositions, entangled
states, or even, as with the density matrix in Equation 2.10, without involving ensembles at all.

What [AC95] have shown is the practical difficulty of finding any observable consequences of the
entangled superposition, as the results of a measurement upon the density matrix in Equation 2.10
are identical to those that would occur from measurements upon a statistical mixture of classically
correlated states. However, to even make this statement, we have to have assumed that we know
when a measurement has occurred in a quantum system, and this is precisely the point at issue®.

When applying this to Schrodinger ’s cat, treating ® as the cat and = as the human observer,

they say

The observer notices that the cat is either dead or alive and thus the observer’s
own state becomes classically correlated with that of the cat, although in reality, the
entire system (including atom . .. the cat and the observer) is in a pure entangled state.
It is practically impossible, although not in principle, to undo this observation i.e. to

resuscitate the cat

9Their argument is essentially a minimum version of the decoherence approach to the measurement
problem[Zur91]. For a particularly sharp criticism of why this approach does not even begin to address the problem,
see [Alb92, Chapter 4, footnote 16]
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Unfortunately this does not work. The statement that the observer notices that the cat is either
alive or dead must presume that it is actually the case that the cat is either alive or dead. That
is, in each experimental realisation of the situation there is a matter of fact about whether the cat
is alive or dead. However, if this was the case, that the cat is, in fact, either alive or dead, then
the system would not described by the superposition at all. It is because a superposition cannot
readily be interpreted as a mixture of states that the measurement problem arises in the first place.

[ACOT]’s resolution depends upon their being able make the assumption that a superposition
does, in fact, represent a statistical mixture of the cat being in alive and dead states, with it being
a matter of fact, in each experimental realisation, which state the cat is in. Only then can we
interpret the reduced density matrix (2.10) as a statistical correlation.

There are, in principle, observable consequences of the system actually being in the superpo-
sition, that depend upon the co-existence of all branches of the superposition'®. Although these
consequences are, in practice, very difficult to observe, we cannot simply trace over part of the
system, and assume we have a classical correlation in the remainder. Indeed, the 'resuscitation’ of
the cat alluded to requires the use of all branches of the superposition. This includes the branch
in which the observer sees the cat alive as well as the branch in which the observer sees the cat as
dead. If both branches of the superposition contribute to the resuscitation of the cat, then both
must be equally 'real’.

To understand the density matrix (2.10) as a classical correlation, we must interpret it as
meaning that, in each experiment, the observer actually sees a cat as being alive or actually sees
the cat as being dead. How are we then to understand the status of the unobserved outcome,
the other branch of the superposition, that enables us to resuscitate the cat, without using the
Many-Worlds interpretation? To make the situation even more difficult, we need only note that,
not only can we resuscitate the ® cat, we can also, in principle at least, restore the ¥ system to a

reference state, leaving the system in the state

Yoo Z ann

The observer is now effectively in a superposition of having observed the cat alive and observed the
cat dead (while the cat itself is alive and well)! Now the superposition of the states of the observer is
quite different from a statistical mixture. We cannot assume the observer either remembers the cat
being alive or remembers the cat being, nor can we assume that the observer must have "forgotten’
whether the cat was alive or dead. The future behaviour of the observer will be influenced by
elements of the superposition that depend upon his having remembered both. [AC95] must allow
states like this, in principle, but offer no means of understanding what such a state could possibly

mean.

10\We will be examining some of these in more detail in Chapter 3.
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2.4 Summary

The Shannon information plays several different roles in a classical system. It derives it’s primary
operational significance as a measure of the capacity, in bits, a communication channel must have
to faithfully transmit a ensemble of different messages. Having been so defined, it becomes possible
to extend the definition to joint, conditional and mutual information. These terms can be used
to describe the information shared between two different systems - such as a message sender and
message receiver - or can be used to describe the changes in information an observer has on making
measurements upon a classical system. In all cases, however, the concept essentially presupposes
that the system is in a definite state that is revealed upon measurement.

For quantum systems the interpretation of information is more complex. Within the context of
communication, Schumacher generalises Shannon’s theorem to derive the capacity of a quantum
communication channel and the Kholevo bound demonstrates that this is the most information
the receiver can acquire about the message sent.

However, when considering the information of unknown quantum states the situation is less
clear. Unlike the classical case there is no unique decomposition of the statistical state (density
matrix) into a probability distribution over individual states. A measurement is no longer neces-
sarily revealing a pre-existing state. In this context, finally, we note that the very application of

information to a quantum system presupposes that we have a well-defined measuring process.
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Chapter 3

Active Information and

Interference

In Chapter 2 we reviewed the status of information gain from a quantum measurement. This
assumed that measurements have outcomes, a distinct problem in quantum theory.

We now look at the concept of 'active information’ as a means of addressing the measurement
problem within the Bohm approach to quantum theory. This approach has been recently criticised
as part of a series of though experiments attempting to explore the relationship between information
and interference. These thought experiments rely upon the use of ’one-bit detectors’ or "Welcher-
weg’ detectors, in the two slit interference experiment. In this Chapter we will show why these
criticisms are invalid, and use the thought experiment to illustrate the nature of active information.
This will also clarify the relationship between information and interference.

Section 3.1 will introduce the Bohm interpretation and highlight it’s key features. This will
introduce the concept of active information. The role of active information in resolving the mea-
surement problem will be briefly treated.

Section 3.2 analyses the which-path interferometer. It has been argued that there is a comple-
mentary relationship between the information obtained from a measurement of the path taken by
an atom travelling through the interferometer, and the interference fringes that may be observed
when the atom emerges from the interferometer. As part of the development of this argument, a
quantum optical cavity has been proposed as a form of which path, or 'welcher-weg’ measuring
device. The use of this device plays a key role in ’quantum eraser’ experiments and in the criticism
of the Bohm trajectories. We will therefore examine carefully how the 'welcher-weg’ devices affect
the interferometer.

Finally, in Section 3.3 we will argue that the manner in which the term ’information’ has been
used in the which path interferometers is ambiguous. It is not information in the sense of Chapter
2. Rather, it appears to be assuming that a quantum measurement reveals deeper properties of a

system than are contained in the quantum description, and this is the information revealed by the
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measurement.

We will show that this assumption is essential to the interpretation of the 'welcher-weg’ devices
as reliable which path detectors. However, it will be shown that the manner in which this interpre-
tation is applied to the 'welcher-weg’ devices is not tenable, and this is the reason they are supposed
to disagree with the trajectories of the Bohm approach. By contrast, the concept of active infor-
mation, in the Bohm interpretation, does provide a consistent interpretation of the interferometer,

and this can clarify the relationship between which path measurements and interference.

3.1 The Quantum Potential as an Information Potential

The Bohm interpretation of quantum mechanics[Boh52a, Boh52b, BH87, BHK87, BH93, Hol93,
Bel87] can be derived from the polar decomposition of the wave function of the system, ¥ = Re®|
which is inserted into the Schrédinger equation®

0¥ \&

yielding two equations, one that corresponds to the conservation of probability, and the other, a

modified Hamilton-Jacobi equation:

7@ B (VS)? v V2R
ot 2m 2mR

(3.1)

This equation can be interpreted in the same manner as a classical Hamilton- Jacobi, describing
an ensemble of particle trajectories, with momentum p = V.S, subject to the classical potential

r’R

—5..5- The quantum potential, Q, is responsible for all

V and a new quantum potential Q =
the non-classical features of the particle motion. It can be shown that, provided the particle
trajectories are distributed with weight R? over a set of initial conditions, the weighted distribution
of these trajectories as the system evolves will match the statistical results obtained from the usual
quantum formalism. It should be noted that although the quantum Hamilton-Jacobi equation can
be regarded as a return to a classical deterministic theory, the quantum potential has a number of
the non-classical features that make the theory very different from any classical theory. We should
regard Q as being a new quality of global energy that augments the kinetic and classical potential

energy to ensure the conservation of energy at the quantum level. Of particular importance are

the properties of non-locality and form-dependence.

3.1.1 Non-locality

Perhaps the most surprising feature of the Bohm approach is the appearance of non-locality. This
feature can be clearly seen when the above equations are generalised to describe more than one par-
iS(x1,22,000,2N)

ticle. In this case the polar decomposition of ¥ (z1,x9, -, zn) = R(x1,22, -, TN)e

produces a quantum potential, @;, for each particle given by:

IWeseth =1
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VgR(xlvaf"va)

2mR(z1,T9,- -, TN)

Qi =

This means that the quantum potential on a given particle ¢ will, in general, depend on the
instantaneous positions of all the other particle in the system. Thus an external interaction with
one particle may have a non-local effect upon the trajectories of all the other particles in the
system. In other words groups of particles in an entangled state are, in this sense, non-separable.
In separable states, the overall wave function is a product of individual wave functions.

For example, when one of the particles, say particle 1, is separable from the rest, we can write
U(xy,20, -, xn) = &(x1)E(x2, -, xN). Inthis case R(x1, 22, -, 2n) = Ri(x1)Rowen (22, -+, ZN),
and therefore:

VIR (21)Rowen (22,---,zn)  ViRi(z1)

@ = " 2mRy(z1)Rowen (w2, an)  2mRi(w1)

In a separable state, the quantum potential does not depend on the position of the other
particles in the system. Thus the quantum potential only has non-local effects for entangled

states.

3.1.2 Form dependence

We now want to focus on one feature that led Bohm & Hiley [BH93] to propose that the quantum
potential can be interpreted as an ‘information potential’. As we have seen above the quantum
potential is derived from the R-field of the solution to the appropriate Schrédinger equation. The
R-field is essentially the amplitude of the quantum field ¥ . However, the quantum potential is
not dependant upon the amplitude of this field (i.e., the intensity of the R-field), but only upon
its form. This means that multiplication of R by a constant has no effect upon the value of Q.
Thus the quantum potential may have a significant effect upon the motion of a particle even where
the value of R is close to zero. One implication of this is that the quantum potential can produce
strong effects even for particles separated by a large distance. It is this feature that accounts for
the long- range EPRB-type correlation upon which teleportation relies.

It is this form-dependence (amongst others things) that led Bohm & Hiley [BH84, BH93] to
suggest that the quantum potential should be interpreted as an information potential. Here the
word ‘information’ signifies the action of forming or bringing order into something. Thus the
proposal is that the quantum potential captures a dynamic, self-organising feature that is at the
heart of a quantum process.

For many-body systems, this organisation involves a non-local correlation of the motion of all
the bodies in the entangled state, which are all being simultaneously organised by the collective
R-field. In this situation they can be said to be drawing upon a common pool of information
encoded in the entangled wave function. The informational, rather than mechanical, nature of

this potential begins to explain why the quantum potential is not definable in the 3-dimensional
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physical space of classical potentials but needs a 3N-dimensional configuration space. When one
of the particles is in a separable state, that particle will no longer have access to this common pool
of information, and will therefore act independently of all the other particles in the group (and
vice versa). In this case, the configuration space of the independent particle will be isomorphic to

physical space, and its activity will be localised in space-time.

3.1.3 Active, Passive and Inactive Information

In order to discuss how and what information is playing a role in the system, we must distinguish
between the notions of active, passive and inactive information. All three play a central role in our
discussion of teleportation. Where a system is described by a superposition ¥(x) = ¥, (z)+ ¥y (x),

and ¥, (z) and ¥y(z) are non-overlapping wavepackets, then
Uo(2)Up(z) =0

for all values of z. We will refer to this as superorthogonality. The actual particle position will
be located within either one or the other of the wavepackets. The effect of the quantum potential
upon the particle trajectory will then depend only upon the form of the wavepacket that contains
the particle. We say that the information associated with this wavepacket is active, while it
is passive for the other packet. If we bring these wavepackets together, so that they overlap,
the previously passive information will become active again, and the recombination will induce
complex interference effects on the particle trajectory.

Now let us see how the notion of information accounts for measurement in the Bohm interpreta-
tion. Consider a two-body entangled state, such as ¥ (z1,x2) = ¢q(21)&a(22) +dp(21)E (x2), where
the active information depends upon the simultaneous position of both particle 1 and particle 2.
If the ¢, and ¢; are overlapping wave functions, but the &, and &, are non-overlapping, and the
actual position of particle 2 is contained in just one wavepacket, say &,, the active information will
be contained only in ¢, (x1)&,(x2), the information in the other branch will be passive. Therefore
only the ¢, (x1) wavepacket will have an active effect upon the trajectory of particle 1. In other
words although ¢, and ¢, are both non-zero in the vicinity of particle 1, the fact that particle 2
is in &, (x2) will mean that only ¢,(x1)E.(x2) is active, and thus particle 1 will only be affected by
Pa(1).

If ¢o (1) and ¢p(21) are separated, particle 1 will always be found within the location of ¢, (x1).
The position of particle 2 may therefore be regarded as providing an accurate measurement of the
position of particle 1. Should the ¢, and ¢, now be brought back to overlap each other, the sepa-
ration of the wavepackets of particle 2 will continue to ensure that only the information described
by ¢q(x1)€(z2) will be active. To restore activity to the passive branches of the superposition
requires that both ¢, (z1) and ¢p(z1) and &, (x2) and & (x2) be simultaneously brought back into
overlapping positions. If the £(z3) represents a thermodynamic, macroscopic device, with many

degrees of freedom, and/or interactions with the environment, this will not be realistically possible.
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If it is never possible to reverse all the processes then the information in the other branch may
be said to be inactive (or perhaps better still ‘deactivated’), as there is no feasible mechanism by
which it may become active again. This process replaces the collapse of the wave function in the
usual approach. For the application of these ideas to the problem of teleportation in quantum
information, see Appendix A and [HM99].

Rather than see the trajectory as a particle, one may regard it as the 'center of activity’ of the
information in the wavefunction. This avoids the tendency to see the particle as a wholly distinct
object to the wavefunction. As the two feature can never be separated from each other, it is better
to see them as two different aspects of a single process.

In some respects the ’center of activity’ behaves in a similar manner to the ’point of execution’
in a computer program. The ’point of execution’ determines which portion of the computer code
is being read and acted upon. As the information in that code is activated, the 'point of execution’
moves on to the next portion of the program. However, the information read in the program will
determine where in the program the point of execution moves to. In the quantum process, it is the
center of activity that determines which portion of the information in the wavefunction is active.
Conversely, the activity of the information directs the movement of the ’center’.

The activity of information, however, differs from the computer in two ways. Firstly, the
wavefunction itself is evolving, whereas a computer program is unlikely to change it’s own coding
(although this is possible). Secondly, when two quantum systems interact, this is quite unlike
any interaction between two computer programs. The sharing of information in entangled systems
means that the ’center of activity’ is in the joint configuration space of both systems. The movement
of the center of activity through one system depends instantaneously upon the information that is
active in the other system, and vice versa. This is considerably more powerful than classical parallel

processing and may well be related to the increased power of quantum computers[Joz96, Joz97].

3.2 Information and interference

In a series of papers[ESSW92, ESSW93, Scu98], the Bohm interpretation has been criticised as
‘metaphysical’,’surrealistic’ and even 'dangerous’, on the basis of a thought experiment exploiting
‘one-bit’ welcher-weg, or which-way, detectors in the two slit interference experiment?. Although
these criticisms have been partially discussed elsewhere[DHS93, DFGZ93, AV96, Cun98, CHMO0],
there are a number of features to this that have not been discussed. The role of information,
and active information has certainly not been discussed in this context. The thought experiment
itself arises in the context of a number of similar experiments in quantum optics [SZ97, Chapter
20] which attempt to apply complementarity to information and interference fringes[WZ79] and

the ’delayed choice’ effect[Whe82] in the two-slit interference experiment. It is therefore useful to

2Similar criticisms were raised by [Gri99] in the context of the Consistent Histories interpretation of quantum
theory. A full examination of Consistent Histories lies outside the scope of this thesis. However, an analysis of

Gri argument, from[HMOQ] is reproduced in Appendix B.
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examine how the problems of measurement, information and active information are applied to this
situation.

To properly consider the issues raised by this thought-experiment, it will be necessary to re-
examine the basis of the two-slit experiment. This will be considered in Subsection 3.2.1. The
role of information in destroying the interference effects will be reviewed in Subsection 3.2.2. The
analysis of this is traditionally based upon the exchange of momentum with a detector destroying
the interference. We will find that the quantum optics welcher-weg devices, which we will discuss
in Subsection 3.2.3 do not exhibit such an exchange of momentum, but still destroy the interfer-
ence. Subsection 3.2.4 then examines the Bohm trajectories for this experiment, and shows why

[ESSW92] regard them as ’surreal’.

3.2.1 The basic interferometer

We will now describe the basic interferometer arrangement in Figure 3.1. An atom, of position

Figure 3.1: Basic Interferometer

co-ordinate x, is described by the narrow wavepacket

(. 1)

. At time t = tg, it is in the initial state

1/)(3% tO)
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and passes through a beam splitter at B, and at t = ¢; has divided into the states

wmm=§;mmm+wwm>

where 1, () is the wavepacket travelling in the upper branch of the interferometer, and ¥4(z) is
the wavepacket in the lower branch.
After t = t;, the wavepackets are reflected so that at ¢ = t5 they are moving back towards each

other

wmmzﬁimmm+wmm>

They recombine at ¢t = t3, in the region R, where the atoms location is recorded on a screen. The

probability distribution across the screen is then

(@, t3)]* = % (\¢u(fv7t3)|2 + [a(, t3)[° + (@, tsT Yalz, t3) + wu(%t:a)%(%ts?/)

In Figure 3.1 we have also included phase shifters at locations P, and Py, in the two arms of
the interferometer. These may be controlled to create a variable phase shift of ¢, or ¢4 in the
respective wavepacket. The settings of these phase shifters will play an important role in the later
discussion, but for the moment, they will both be assumed to be set to a phase shift of zero, and
thus have no effect upon the experiment.

If we apply the polar decomposition 1) = Re* to this, we obtain

[(x,t3)° = = (Rulw,t3)? + Ra(w,t3)? + 2Ry (2, t3) Ra(x, t3) cos(Sy (2, t3) — Sa(,t3)))

DN | =

We can simplify this by assuming the beam splitter divides the wavepackets equally, so that in the

center of the interference region
Ru(l',tg) = Rd(x,tg) = R((E,tg)

and

(2, t3)° = R(z,t3)* (1 + cos(AS(x, t3)))

where AS(z,t3) = Su(x,t3) — Sa(x,ts3).

The cosine of the phase produces the characteristic interference fringes. Had we blocked one
of the paths (u, for example) we would have found the probability distribution was R(z,t3)%. The
probability distribution is not simply the sum of the probability distributions from each path. The
superposition of states given by v (x,t3) cannot be simply interpreted as half the time the atom
goes down the u path, and half the time going down the d path.

Now let us consider the addition to the interferometer of the phase shifters in each of the paths.
These could be implemented by simply fine tuning the length of each arm. The u path is shifted
by a phase ¢, and the d path by ¢4. The effect on the interference pattern is simply to modify

the cosine term to

cos (AS(z,t3) + (¢ — d))
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Now we have
(2, t3)|° = R(x,t3)? (1 + cos (AS(x,t3) + (du — ¢a)))

At the points x,,, where
AS(wn:ta) + (b = ¢a) = 5 + 1

then the value of [)(a,,, t3)|° = 0 ie. there is no possibility of the atom being located at that point.
The important point to note is that the values of x,, are determined by the values of both ¢, and
@g, that is by the setting of the phase shifters in both arms of the interferometer.

This emphasises the point that we are unable to regard the superposition of states in ¢(x, 1)
as simply representing a situation where, in half the cases the atom travels the d-path, and in half
the cases the u-path. Not only is the interference pattern not simply the sum of the probability
distribution from each of the two paths, but critically, the location of the nodes in the interference
pattern depends upon the settings of instruments in both paths.

A simplistic way of stating this is in terms of what the atom ’knows’ it should do when reaching
the screen. If the atom proceeds down one path, and the other path is blocked, it can arrive at
locations that are forbidden if the other path is not blocked. How does the atom ’know’ whether
the other path is blocked or not? The phase shifters demonstrate that, not only must the atom
’know’ whether or not the paths are blocked, but even if they are not blocked, the very locations
which are forbidden to it depend upon the atom ’knowing’ the values of the phase shifts in both
arms. If the atom only travels down one path or the other, how is it to ’know’ the phase shift in
the other path?

This is a generic property of superpositions. We cannot interpret these as a statistical mixture
as this implies that in each experiment either one or the other possibility is realized while we can

always exhibit interference effects which depend upon both of the elements of the superposition.

3.2.2 Which way information

We now turn to the attempts to measure which way the atom went. The interference pattern
builds up from the ensemble of individual atoms reaching particular locations of the screen. If
we could know which path the atom takes, we could separate the ensemble of all the atoms that
travelled down the u-branch from the atoms travelling down the d-branch, and this might shed
light upon the questions raised by the introduction of the phase shifters.

As is well known, however, the attempt to measure the path taken by the atom destroys
the interference pattern recorded on the screen. The paradigm explanation[Fey63, Chapter 37,
originally due to Heisenberg, involves scattering a photon from the atom, to show it’s location.
To be able to determine which path the atom takes, the wavelength of the photon must be less
than the separation of the paths. However, this scattering changes the momentum of the atom,
according to the uncertainty relationship AzAp > h. This random addition to the wavefunction

of the atom destroys the phase coherence of the two branches of the superposition and so destroys
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the interference. The measurement of the atoms location changes the quantum system from the

pure state 1 (x,t;) to the statistical density matrix

pP= % (|hu(z, 1)) (Wu (2, t1) | + |Yal(z, t1)) (Yalz,t1)])

where |t (x,t1)) (¥u(x,t1)]| is correlated to the measurement outcome locating the atom in the
u-path, and |[¢q(x,t1)) (Ya(z,t1)| is correlated to the atom located in the d-path. The values of
the phase shifters is now irrelevant, and no interference occurs in the region R. We will not now

find any inconsistency in treating the system as a statistical mixture.

Quantity of information The information obtained from the position measurement above is
"all or nothing’. We either do not measure the path, and get an interference pattern, or we measure
it, and lose the interference pattern. This often leads to a tendency to adopt the language where
the quantum object is said to behave in a ’particlelike’ manner, when the which path information
is measured, and in a 'wavelike’ manner when the interference is observed.

In [WZ79] the experiment is refined by varying the certainty one has about the path taken by
the atom. There are several different methods proposed for this, but the most efficient suggested
is equivalent to changing the beam splitter in Figure 3.1, such that the atomic beam emerges with

state
wo(x7t2) = Oﬂﬂu(% t2) + 6¢d($,t2)

where |a|® +|6]> = 1. Wootters and Zurek deem the information "lacking’ about the path of the

atom to be

I 7z = —pu 1085 Pu — Pa logy Py (3.2)

where p, = |a|® and pq = |B°.

The resulting interference pattern on the screen is given by

[0 (, t)| = R(x, t5) (1 + 2y/Dupa cos(AS (2, t3) + (6u — $a) +0))

where 0 is the relative phase between the complex numbers a and S. If the value of p, approaches
zero or one, then the atom will always go down one arm or the other. Iy z goes to zero, so
there is no information lacking about the path of the atom, but the interference term disappears.
The largest interference term occurs when p, = pg = %, for which Iy z = —log, 2 represents a
maximum lack of information. It is noticeable that this experiment does not actually involve a
measurement at all. However, Wootters and Zurek show that, for a given size of the interference
term, the information that can be obtained from any measurement is no more than Iy 7. In this
respect, the complementarity between the interference and Iy z is equivalent to the equality in the
uncertainty relationship AzAp > h. What is significant here is that in Wootters and Zurek’s view
it is not the momentum transfer that destroys the interference effects, rather it is the information

we have about the path of the atom.
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Finally we can consider Wheeler’s delayed choice experiment[Whe82] where the screen may
be removed from Figure 3.1 and detectors are placed at D; and Ds, as in Figure 3.2. Now the

wavepackets continue through the interference region, and become separate again at t = t4

T/J(%M) = (’l/)u(xvtél) + ¢d(x7 t4))

A detection at D; of the wavepacket 1q(x,t4) is interpreted as detecting that the atom went

through the d-path in the interferometer. Now, the choice of whether to insert the screen can

-D1

P.

Figure 3.2: Which-path delayed choice

be made after the wavepackets have entered the interferometer arms (and even passed the phase
shifters). The choice as to whether we obtain interference (the atom is a wave in both arms of
the interferometer) or information about which path the atom took (the atom is a particle in one
branch of the interferometer) is delayed until after the quantum system has actually entered the

interferometer.

3.2.3 Welcher-weg devices

In a series of articlesESW91, ESSW92, SZ97, and references within], it has been suggested that
the which-path information can be measured by using certain quantum optical devices, which we
will follow the authors of these papers in referring to as 'welcher-weg’ (German for 'which way’)
devices. These devices do not make a random momentum transfer to the atom and so it is argued

they represent an advance in the understanding of the which path interferometer. It is the use of
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these devices that is essential to understanding the ’quantum eraser’ experiments and the criticism
of the Bohm interpretation.

There are three key physical processes that are involved in these experiments, all involving a
two-level circular Rydberg atom. This is an atom whose outer shell contains only a single electron,
the state of which can be treated effectively as in a hydrogen atom. The two levels refers to the
ground (]g)) and first excited (|e)) state of the outer shell electron, which differ by the energy

AFER. The processes to which this atom is subjected are:
e Timed laser pulses producing Rabi oscillations.
e Interaction with a single mode micromaser cavity.
e Selective ionization

Full details of these processes can be found in[AE74, MW95, SZ97]. We will describe only their

essential features here.

Rabi oscillations The atom rapidly passes through an intense electromagnetic field, oscillat-
ing at a single frequency. This can be achieved using a pulsed laser, and the intensity of the
electromagnetic field allows it to be treated as a semiclassical perturbation on the atomic states.
The frequency wgr of the laser is tuned to the energy gap between the ground and first excited
state of the atom AFERr = hwpgr. The effect upon the atomic state is to produce a superposition of

ground and excited states

a(t) lg) + B(t) [e) (3-3)
whose equation of motion is

da(t) R

2L = 26

agit) _ R

& - oW

where R is the Rabi oscillation term. This factor is a constant, whose exact value is a function
of the overlap integral between the |g) and |e) states under the influence of perturbation field of
the laser.

The solutions to these coupled equations are

o) = a(0)cos (Izt>+zﬂ(0)sm<lzt>
) = B(0)cos (?)ﬂa(o)sm(?)

If we time the length of the pulse carefully, we can manipulate the excitation of the atom. Of
particular importance is the 7 pulse, where Rt = 7, as this has the effect of flipping the atomic

state so that |e) — ¢|g) and |g) — 2]e).
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Single Mode Cavity The Rabi oscillations are produced from an intense, semiclassical elec-
tromagnetic field. The single mode cavity involves the interaction of the atom with a field with
very few photon states excited. The operation is essentially based upon the Jaynes-Cumming
model[CJ63].

Instead of using a laser pulse, the circular Rydberg atom is sent through a high quality mi-
crowave cavity, which is tuned to have the same fundamental resonant frequency wg as the atom.
We will describe the state of the electromagnetic field in the cavity using the Fock state basis,
giving the number of photons excited in the cavity at the fundamental frequency. Where there are
n photons in the cavity, it’s quantum state is described as |n).

If the length of time the atom spends in the cavity is carefully controlled, there are only three

interactions we need to consider for the purposes of the experiments involved:

|90) — [g0)
lg1) — |e0)

|e0) — |g1) (3.4)

If an excited atom goes through an unexcited cavity, it decays to the ground state, and the hwg
energy excites the first photon state of the cavity. If the atom in the ground state goes through a
cavity with a single photon excitation, the energy is absorbed, exciting the atom and de-exciting
the cavity. If neither atom nor cavity are excited, then no changes can take place.

The most important property of these devices is that, if an excited atom passes through the
cavity, it deposits its energy into the photon field with certainty. As we shall see, it is this that
leads [ESSW92] to describe them as 'welcher-weg’ devices 3.

Selective Ionization State selective field ionization passes the atom through a electric field that
is sufficiently strong to ionize the atom when the electron in the excited state, but insufficiently
strong to ionize the atom with the electron in the ground state. The ionized atom and electron are
then detected by some amplification process. For completeness, the ionization of the excited state
may be followed by a second selective ionization and detection, capable of ionizing the ground
state. As long as the first ionization is very efficient, a reliable measurement of the ground or first
excited state will have taken place.

[ESSW92] now proposed the experiment where a welcher-weg cavity is placed in each arm of
the delayed choice interferometer, as shown in Figure 3.3. The atomic wavepackets, initially in the
ground state, are given a m pulse just before entering the interferometer. The electron excitation is
passed on to the cavity field mode, leaving the cavity excited. With the screen missing, the atomic
wavepacket is then detected at either D1 or Dy. The location of the photon, in the upper or lower
cavity, is detected by sending another (’probe’) atom, initially in the ground state, through the

cavity and performing a state selective ionization upon it.

3A second property of interest is that the interaction of the atom and cavity has negligible e[&dt upon the

momentum of the atomic wavepacket.
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Figure 3.3: Welcher-weg cavities

If we follow the quantum evolution of this system, we have:

1. At t = tp, the atom has not yet encountered the beam splitter, but is 7 pulsed into the

excited state |e), while the u-path and d-path cavities are in the ground state (n = 0).
| (to)) = |1(to), €, Ou, 0a)
2. The atom passes into the interferometer and the wavepacket is split into the two arms:

W(ty)) = % (u(tr). €00 0a) + [ta(t1). €, 00, 04))

3. The wavepackets encounter the welcher-weg cavities. The excited electron energy is deposited

in the photon field of the relevant cavity

(1)) = % ($u(t2), 9, 1 0) + [$a(t2). 9.0 L)

4. The wavepackets pass through the interference region. The triggering of the measuring device

D1 collapses the state to
|wd(t4)v g, O, 1d>

while triggering Do produces
W’u (t4)7 g9, 1“7 Od>
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5. Probe atoms are sent through the welcher-weg cavities. If D; was triggered, then the d-path
probe atom will absorb a photon and be detected by the selective ionization, while a Dy
detector triggering will be accompanied by the u-path probe atom absorbing a photon and

being ionized.

This certainly appears to confirm Wheeler’s interpretation of the delayed choice path measurement.
If the atom travels down the d-path, it deposits the energy in the d-cavity, passes through the
interference region and is detected by D;. Conversely, if the atom travels down the u-path, it
deposits the energy in the u-cavity, passes through the interference region and is detected by Ds.

If we place the screen back in the interference region, what pattern do we see? The answer is

now

[(z [T (t3))]* = R(w,13)*

There is no interference term. The reason the interference disappears is due to the orthogonality

of the



Figure 3.4: Surrealistic Trajectories

Delayed choice trajectories

Let us first note that trajectories of the kind shown in Figure 3.4 have long been known in the Bohm
interpretation, and discussed in the context of the Wheeler delayed choice experiment[DHP79,
Bel87]. However, these discussions of the delayed choice experiment suggested that the effect
occurs only when the path of the atom is not measured in the arm of the interferometer. If
detectors are placed in the interferometer arms, then the result should be the trajectories shown
in Figure 3.3. It is then argued that the detection of an atom at D; in the arrangement of Figure
3.2 cannot be taken to imply the atom actually travelled down the d-path, except through the
application of a 'naive classical picture’[Bel87, Chapter 14] and the possibility of observing the
interference fringes in the region R undermine any such picture.

By adding their welcher-weg devices [ESSW92] appear to destroy this position. Two properties
emerge. Firstly, the location of the atom in the detectors coincides with the location of the photon
in the cavity, in the manner shown in Figure 3.3. This is taken to confirm Wheeler’s assumption
that atom did indeed pass down the d-path when detected in the D; detector, and the u-path
when detected in the Ds detector. Secondly, the Bohm trajectories still are able to behave in
the manner shown in Figure 3.4 despite the measurement of the atom’s path by the welcher-weg
devices. [ESSW92] conclude that ”the Bohm trajectory goes through one [path], but the atom
[goes] through the other”, the Bohm trajectories are ”at variance with the observed track of the

particle” and are therefore ”surrealistic”. In [ESSW93] they say
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If the trajectories ...have no relation to the phenomena, in particular to the de-
tected path of the particle, then their reality remains metaphysical, just like the reality

of the ether of Maxwellian electrodynamics
and emphasise

this trajectory can be macroscopically at variance with the detected, actual way

through the interferometer

We will consider the basis of [ESSW92]’s arguments in detail in the next Section. Before we
do this, however, we will need to examine in more detail how the Bohm trajectories behave in the

interferometer, and how the ionization of the probe atoms become correlated to the detectors.

The cavity field

The treatment of the field theory in the Bohm interpretation is developed in [BHK87, BH93,
Hol93, Kal94]. In essence, while the particle theory given in Section 3.1 has a particle position
co-ordinate x, guided by the wavefunction, the field theory supposes that there is an actual field,
whose evolution is guided by a wavefunctional. This wavefunctional is the same as the probability
amplitude for a particular field configuration in the standard approach to quantum field theory.

For a single mode cavity, such as the welcher-weg devices, this takes a particularly simple
form and has been examined in great detail in [DL94a, DL94b]. The Bohm field configuration
can be represented by a single co-ordinate (the field mode co-ordinate for the resonant cavity
mode) and the wavefunctional reduces to a wavepacket representing the probability amplitude for
the field mode co-ordinate. As long as one remembers that the 'beable’ is field mode co-ordinate
representing a distribution of an actual field, rather than a localised position co-ordinate, the single
mode cavity may be treated in much the same manner as the particle theory in Section 3.1.

For the cavity C,,, therefore, we need only introduce a mode co-ordinate g, the wavefunctional
for the cavity mode ground state |0,) and for the first excited state |1,). Similarly, for the cavity
Cy we introduce qq, |04) and |14). It is important to note that, although the states |0) and |1) are

orthogonal, they are not superorthogonal.

Basic interferometer

We now review the evolution of the Bohm trajectories in the experimental arrangements in Figures
3.1 and 3.2

As in Subsection 3.2.1, the atomic wavefunction, in state i(x,t;) divides at the beam splitter.
The trajectory of the atom will move into one or the other of the wavepackets ¥, (x, t2) or ¥q(x, t2).
As the wavepackets move through the interferometer arms, the information in only one wavepacket
is active and the other is passive. However, when the interference region is reached, the two
wavepackets begin to overlap and the previously passive information becomes active once more.

Now the information from both arms of the interferometer is active upon the particle trajectory.
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This allows the phase shift information ¢, and ¢4 from both phase shifters to guide the path of the
trajectory, and the interference pattern can show nodes at locations dependant upon the setting
of both devices.

If the screen is not present, the wavepackets separate again. As both wavepackets were active in
the interference region, there is no guarantee that the trajectory emerges in the same wavepacket
in which it entered. In fact, for the simplest situations, the trajectory will never be in the same

wavepacket! The trajectories follow the type of paths in Figure 3.4[DHP79, Bel80].

Which way measurement

We now add conventional measuring devices to the arms of the interferometer. These will be
described by a co-ordinate (y, or ygq) and a wavefunction, initially in state &(y). When the
wavepacket of the atom moves through the arm of the interferometer, it interacts with the mea-

suring device to change it’s state to &1 (y):

[ (t2)€0(Yu)bo(ya)) —  [Yu(t2)é1(yu)éo(ya))
[Va(t2)€0(yu)éo(ya)) —  [al(t2)éo(yu)é1(ya))

The states £ and &; are superorthogonal and represent macroscopically distinct outcomes of the
measurement (such as pointer readings). We will assume further that the measuring device has
large number of constituents and interacts with the environment, in such a manner as to destroy
any phase coherence between the &y and &; states.

Now, the state of the atom and measuring devices after the interaction is

% (Ithu (t2)&1 (Yu)€0(ya)) + [¥a(t2)€0(yu)1(ya)))

As described in Section 3.1, if the atom trajectory is located in the u-path of the interferometer,
then only the information in ¢, (x,t2) is active. The y, co-ordinate moves into the &; wavepacket
and the gy, co-ordinate remains in the £, wavepacket. We describe the information in the other
half of the superposition as passive. Had the atom trajectory initially entered the d-path, y4; would
have entered the &; wavepacket.

When the atomic wavepackets encounter the interference region, the v, (x,t3) and ¥q(x,t3)
begin to overlap. However the measuring device states are still superorthogonal. The information
in the other branch of the superposition does not become active again. Consequently, the atom
trajectory continues to be acted upon only by the wavepacket it entered at the start of the in-
terferometer. No interference effects occur in the R region, and, if the screen is not present, the
u-path trajectory passes through the interference region to encounter the detector at Dy while the
d-path trajectory goes through to the detector at D;. The superorthogonality of the measuring
devices ensures that the trajectories do not reflect in the interference region, and the results of the
measuring devices in the arms of the interferometer agree with the detectors at Dy and D, that

the atom has followed the paths indicated in Figure 3.3.
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Although it is the superorthogonality that plays the key role in producing the measurement
outcome, we will now say a few words about the role of the loss of phase coherence. As the
macroscopic ¢ states interact with the environment, further entangled correlations build up with
large numbers of environmental particles. This leads to habitual decoherence in the macroscopic
states. From the point of view of active information, however, what is most significant is that
if even a single one of the environmental particles is correlated to the measuring device states
in superorthogonal states, then the passive information in the measuring device states cannot be
made active again. As an example, if the measuring device at £; leads to the scattering of an atom
in the air to a different place than if the device had been at &y, then the passive information in
&o cannot be made active unless the atom in the air is also brought back into overlapping states.
As, for all practical purposes, the interaction with the environment makes this impossible, we can

describe the information in the ’empty’ wavepacket as inactive, or deactivated.

Welcher weg devices

We are now in a position to examine the experimentum crucis of [ESSW92]. In place of the
measuring devices above, we have optical cavities in the paths of the interferometer. At ¢t = ¢y the

wavefunction is
1
V2

Now if the atom trajectory is in the u-path, then in cavity C,, the information in |1,) is active, and

|\Il(t2)> = (W}u(t?)?gv Tu, Od> + W’d(tz)»g, Ou, 1d>)

the field mode co-ordinate ¢, will behave as a single photon state. In cavity Cy, it is |04) that is
active, so g4 behaves as a ground state. Had the atom trajectory been in the d-path, the situation
would be reversed.

Now, unlike the measurement above, the welcher-weg states are not superorthogonal, and
undergo no loss of phase coherence. When the atomic wavepackets enter the overlap region R, all
the wavepackets in the state

1
V2

are overlapping. The trajectory co-ordinates for x, ¢, and gg are in non-zero portions of the

|\Il(t3)> = (|¢u(t3)7ga 1'LL7 0d> + |¢d(t3)7ga Ou’ 1d>)

wavefunction for both branches of the superposition. The previously passive information becomes
active again. It is this that allows the atomic trajectories to become reflected in R and emerge
from this region in the opposite wavepacket to the one they entered, as in Figure 3.4.

If the atom trajectory emerges from R in the wavepacket ¢, (x,t4), then the information in the
d-path wavepacket becomes passive again. This includes the activity of the ¢, and g4 field mode
co-ordinates, so only the |1,) information is active for ¢, and the |04) information is active for gq.
The C,, cavity therefore appears to hold the photon, while the Cy cavity appears empty. This will
be the case even if the atom trajectory originally passed through the C, cavity.

Finally, the atom trajectory encounters the detector either at Dy or Dy and the probe atoms

are sent through the cavities. The probe atom that is sent through the cavity for which the |1)
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information is active will be excited, and ionized, and the correlation between the excited state
ionization and the atom detectors will appear to be that of Figure 3.3. This shows how, despite
having trajectories of the form in Figure 3.4, the Bohm approach produces exactly the same

experimentally verifiable predictions as quantum theory.

3.2.5 Conclusion

The Bohm interpretation clearly provides an internally consistent means for describing the in-
terference experiments, and produces all the same observable predictions as 'standard’ quantum
mechanics. Nevertheless, [ESSW92, ESSW93, Scu98] argue that the trajectories followed by the

atom in the Bohm interpretation are

macroscopically at variance with the detected, actual way through the interferom-

eter

The claim is that the location of the photon in the welcher-weg device, after the atomic wavepackets
have left the region R tell us the way the atom actually went. If this claim is true the Bohm trajec-
tories cannot be an accurate representation of what actually happened. As we have established the
internal consistency of the Bohm interpretation, we must now examine the internal consistency of
[ESSW92)’s interpretation of their welcher-weg devices. This examination should not be from the
point of view of the Bohm interpretation, but rather from the point of view of ’standard’ quantum
mechanics.

It should be clear from the discussion above that the essential difference between the standard
measuring device, for which the Bohm trajectories behave as in Figure 3.3, and the welcher-weg
devices, is that in the cavities there is a coherent overlap between the excited and ground states
throughout the experiment. This is the property of the welcher-weg devices that allows the Bohm
trajectories to reverse in the region R and produce the effect that [ESSW92] call ’surrealistic’. If,
for example, the probe atoms were sent though the cavities and ionized before the interference
region was encountered, then the ionization and detection process would lead to a loss of phase
coherence, or in the Bohm approach a deactivation of information in the passive wavepacket. In
this case the Bohm trajectories could not reverse, and the trajectories would follow the paths
in 3.3. We must therefore investigate the consequences of the persistence of phase coherence in

standard quantum theory, to see how this affects our understanding of the welcher-weg devices.

3.3 Information and which path measurements

First we will examine the nature of the which-path ’information’ obtained in the conventional
measurement. This, it turns out, is not information in the sense we encountered it in Chapter 2,
although it is related to the Shannon information from a measurement. The information can be

interpreted in two ways: as a strictly operational term, referring to the observable consequences
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of a conventional measurement, or as revealing a pre-existing situation or property of the object
being measured. The second interpretation implicity assumes that there is a deeper level of reality
than that provided by the quantum mechanical description of a system.

We will then consider the quantum cavity ”welcher-weg” devices. These do not fulfil the criteria
of a conventional measuring device and there are observable consequences of this. The interpre-
tation [ESSW92] place upon the information derived from their ”welcher-weg” devices is that of
revealing pre-existing properties of the atom, namely it’s location. To make this interpretation,
they must implicitly make two assumptions - that quantum objects, such as atoms or photons,
possess an actual location, beyond the quantum description, and that the atom can only interact
with the welcher-weg devices if the actual location of the atom is within the device.

However, we will demonstrate that the continued existence of phase coherence between the
welcher-weg states does allow the observation of interference effects, and these make the combi-
nation of these two assumptions untenable. The welcher-weg devices cannot be interpreted as
providing a reliable measurement of the location of the atom. This conclusion will be from the
perspective of ’standard’ quantum mechanics. We will therefore find that [ESSW92]’s argument
that the location of the ionized electron reveals the actual path taken by the atom (and contra-
dicting the Bohm trajectories) is not supported by standard quantum mechanics, and cannot be
consistently sustained. Finally, we will show how the interference effects observed can be naturally

explained within the context of active information.

3.3.1 Which path information

In [WZ79)] it is suggested that it is not the momentum transfer of a scattered photon that destroys
interference fringes, but rather the gathering of information about the path taken by the atom.
This would appear to be supported by the welcher-weg devices, as these do not significantly affect
the momentum of the atom. However, we need to consider what we mean by the information
gathered. We will assume the beam splitter can be adjusted, as in Subsection 3.2.2, to produce

the state
Yz, t2) = oy (x, t2) + Btba(z, t2)

The information term Iy z in Equation 3.2, although expressed as a Shannon information,
does not correspond to the quantum information terms in Chapter 2. The atom is initially in the
pure state 1(x,tp). It continues to be in a pure state after it has split into two separate beams
in the interferometer. The Schumacher information of the atomic state is zero. This represents
a complete knowledge of the system. If we calculate the information gain from a conventional
measurement of the path taken by the atom, we find that it is always zero. The initial state is
¥ (z,to) with probability one. The measurement of the location of the particle has outcomes u and

d with probabilities |0¢|2 and |3 |2, so Bayes’s rule (Equation 2.4) produces the trivial result

P2
p(wl) = 1L
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p(1/)|d)— jﬂjz =1

We saw this in Subsection 2.2.4. The information gain from a measurement relates to the
selection of particular state from a statistical mixture of states. As this particular situation is not
described by a mixture® but by a pure state, there is no uncertainty. Information revealed by the
measurement is NOt a gain of information about the quantum properties of the system.

From the perspective of information gain, only if the wavepacket

wo(xa tl) = O‘wu('rv tl) + ﬂ¢d($,t1)

was replaced by the statistical mixture

P = laf* [du(@ t1)) (ula,t) | + 1B [$a(z, t1)) ($alz,t1)]

of |1, (t1)) and |¥4(t1)) states, would there be an information gain Iy z from a measurement, but

in this case there would be no interference.

Information about the measurement How can we understand Iy z when the initial state
is a pure state? There are two possible ways of doing this. The first method is to note that
Iy 7 does represent the Shannon uncertainty about the outcome of the measurement. Let us be
very careful what we mean here. We are proposing that the measuring device is a conventionally
defined, macroscopic object, with an observable degree of freedom, such as the pointer on a meter.
Iy 7 represents our prior ignorance of the state the pointer will be in when the measurement is
concluded. Naturally, this assumes the measurement problem is solved so that it is meaningful to
talk about the pointer being in a state, and the measurement being concluded.

This remains a controversial topic in the interpretation of quantum theory. However, it is
generally accepted, and is certainly part of the ’standard’ approach to quantum theory, that
such a measurement involves an amplification of the quantum state to macroscopic levels that
is, for all practical purposes, irreversible, and is accompanied by an irretrievable loss of phase
information between the different measurement outcomes. At the end of such a process, the
entangled state between the measuring device and the measured object can be replaced by a
statistical mixturewithout in any way a[ecking the future evolution of the experiment. It more or
less follows that it can only be applied to the kind of macroscopically large objects for which a
classical description is valid.

At the end of the measurement, we would know what state the quantum object was in, as a
result of the correlation to the measuring device. However, we could not infer from this that the
quantum object was in that state prior to making the measurement. If we had considered making
a complementary measurement before our path measurement, we could have observed the kind of
interference effects that preclude the assumption that the measured object was in one or the other

state, but that the state was unknown to us.

50r, equivalently, is described by the trivial mixture, for which p() = 1
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In this respect we would be viewing the experiment in the manner Bohr[Boh58] appears to

recommend:

all unambiguous use of space-time concepts in the description of atomic phenomena
is confined to the recording of observations which refer to marks on a photographic

plate or to similar practically irreversible amplification effects

From this point of view, the quantity Iy 7 refers to the properties of the macroscopically observable
measuring device outcomes in the particular experimental arrangement. It does not represent a
statement of the ignorance of the properties of the atom itself. Our knowledge of the state of the
atom, as a quantum object, is already complete (it is in a pure state). It is only the future states

of the measuring device of which we are uncertain.

Information about the atom The second way of viewing Iy 7 is to suppose that the measuring
device does precisely what it was intended to do - that is, measure the actual location of the atom.
This must assume that the atom does indeed have an actual location, and the measurement reveals
that location. This involves the attribution to the atom of a property (well defined location) which
goes beyond the quantum description of the object.

When we have only the either/or options of designing an interference experiment to test the
wave nature of the quantum object, or a which path experiment to test the particle nature of the
quantum object, the tendency is to talk loosely of the quantum object as being a particle or a
wave depending upon the experimental arrangement. However, the intermediate cases introduced
by [WZ79] make this more difficult, as the object is supposedly manifesting both particlelike and

wavelike properties in the one arrangement:

The sharpness of the interference pattern can be regarded as a measure of how
wavelike the [object] is, and the amount of information we have obtained about the

[object]’s trajectories can be regarded as a measure of how particlelike it is

The problem here is the talk of our possessing information about the trajectory taken. The
normal meaning of this sentence would be clear: it would mean that the object had a well-defined
trajectory, and we had some probabilistic estimate of which path was taken in any given experiment.
This meaning applies even when the ignorance of the path is maximal. This would be the case
where Iy z = 1. In this case, the consistent use of the word information must be taken to mean
that the atom follows the u-path half the time and the d-path the other half the time.
Unfortunately, this is exactly the situation considered in the basic interferometer (Subsection
3.2.1). The proponents of an information-interference complementarity would argue the interfer-
ence fringes appear because we lack information about which path was taken. To consistently
understand the meaning of the word information here, we must assume that the atom does, in fact
follow a particular path, it is just that we ourselves are ignorant of which one. However, the set-

tings of the phase shifters demonstrates that the ultimate location of the atom in the interference
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region depends upon the phase shift in both arms of the interferometer. This leads to the exact

situation Bohr[Boh58] warns against, where

we would, thus, meet with the difficulty: to be obliged to say, on the one hand, that
the [atom] always chooses one of the two ways and, on the other hand, that it behaves

as if it had passed both ways.

3.3.2 Welcher-weg information

We have seen that the interpretation of which-path information in the context of a conventional
quantum measurement is not without it’s problems. We will now consider the welcher-weg devices.

As we have seen, these devices maintain phase coherence between the u- and d-branches of
the superposition, and this phase coherence is essential to produce the ’'surrealistic’ behaviour of
the Bohm trajectories. Such phase coherence is a property that a conventional measuring device
must not possess. It is only when the state selective ionization takes place that a conventional
measurement can be said to have taken place. This must be after the atoms have traversed the
interference region R.

When considering the ’which-path’ measurement above, the destruction of phase coherence
in the measurement prevented the occurrence of interference fringes in the region R. With the
welcher-weg devices in place, we similarly lose interference fringes. If we add the phase shifters to

the welcher-weg experiment, this leads to the state at ¢t = t3
1
|\Ij(t3)00> = 7= (el¢u ‘ql)u(t?))a 9, 111,7 Od> + el¢d |¢d(t3)7ga OU7 1d>)
V2
The probability distribution in the interference region turns out to be
2
(@ [¥(t3)")]" = R(z,t3)”

The values of ¢,, and ¢4 have no effect upon the pattern that emerges if a screen is placed in the
region R.

The reason for this is that the atom is not, in itself, in a pure state. It is in an entangled
superposition with the photon states of the fields in the two micromaser cavities. If one traces over

the entangled degrees of freedom, one obtains the density matrix

([Yu(ts)) (Yults) |+ |al(ts)) (Pa(ts)])

DN | =

which is the same result one would have obtained if there had been a statistical mixture of atomic
wavepackets travelling down one path or the other. As all the observable properties of a system are
derivable from the density matrix there is no way, from measurements performed upon the atom
alone, to distinguish between the state |¥(¢3)) and the statistical mixture.

It might therefore seem unproblematical to argue, as [ESSW93] do, that, although the welcher-

weg devices are not conventional measurement devices, they are still reliable
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Perhaps it is true that it is ”generally conceded that ... [a measurement] .. .requires
a ...device which is more or less macroscopic” but our paper disproves this notion
because it clearly shows that one degree of freedom per detector is quite sufficient.

That is the progress represented by the quantum optical which-way detectors.

To [ESSW92, SZ97] the absence of the interference terms demonstrates information has been

gathered, and that correspondingly a measurement must have taken place

As long as no information is available about which alternative has been realized,
interference may be observed. On the other hand, if which-path information is stored

in the cavities, then complementarity does not allow for interference [SZ97, pg574]

However, the tracing over the cavity states does not mean we can simply replace the entangled
superposition with the density matrix, nor does it mean that we can interpret the entangled su-
perposition as a statistical mixture. Although interference properties can no longer be observed
from operations performed upon a single subsystem, we can observe interference effects from corre-
lated measurements upon the entire system because, unlike in a conventional measurement, phase

coherence still exists.

Interference We will now demonstrate how to observe interference effects, by operations per-
formed upon the probe atom, after the atomic wavepacket has reached the region R and after
the probe has left the cavity. The location of the photon excitation energy is determined by the
selective ionization of a probe atom sent through the cavity. The probe atom is initially in the

ground state |gp). The evolution is

lgp0) — |gp0)
lgp1) — |ep0)

The state of the system becomes

1
|\Ij(t4)> = = (eld)u |¢u(t3)7g>6Pu’9Pd> + el(bd |¢d(t3)ag7gpuvePd>) |Ou;0d>

V2
where |gp, ) represents the ground state of the u-cavity probe atom etc. The ionization measure-

ment of the probe atoms leads to the states:

lep,, gp.) = |Yu(x,ts))

lgp,,er,) = |Ya(w,ts))

which appears to give us a measurement of the atomic position.

We should remember that this is a measurement of the atomic position after the atomic
wavepackets have left the interference region R, and for which there is no disagreement between
the Bohm trajectories and [ESSW92]’s interpretation of the location of the atom.

Let us consider what happens if the screen had been placed in the interference region R. Each

experiment would lead to a scintillation at some point on the screen. By correlating the detected
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position of the atom in the interference region with the outcomes of the probe atom ionizations, we
would select two subensembles, which would each have a distribution of R(z,t3)?. No interference
would be visible.

Now we consider the modification necessary to observe interference. Before ionizing the probe
atoms, let us pass them each through a pulsed laser beam, producing Rabi oscillations, as in

Equation 3.3. The size of the pulse should now be Rt = %w. This produces the rotation

1

) = 5 (1) +21e)
€} — % (t1g) + 1))

and the state of the system (ignoring the now irrelevant cavity modes) is

(1)) = (@9 ([ults)s ep, gpa) + ¢ [bults), gp.s 9p2)

2
+e ‘@Du(tg), E€Py, s ePd> - W}u(t?’)» gp,, 6Pd>)
+e' % ([a(ts), gp, . ep,) + tvalts), ep,, ep,)

+1[a(ts), gp,, gp,) — |a(ts), ep,, gp,)))

which can be rewritten as

0(t;)") = (ew“ |thu(ts)) — "% [Va(ts))) e, gpu) ; 9P, €Py)

1) + 94 (1)) WP 0Pa) HlCPs CRs)

2

+1 (e
Now when the probe atoms are ionized the atomic wavefunction is either

(Walts)) = —z (7 [hu(ta)) — €% [a(ta)))

Sl

or

Wy (ts)) = % (€ [u(ta)) + €94 [a(ts)))

The probability distribution in the interference region is now either

R(Jﬁ, t3)2

[ 1Wa(ta))” = T2 (14 cos (AS(2, ) + (6 — 6a)

or
R(l‘, t3)2

[ [Wa(t3))]” = ==

(1 — cos (AS(x,t3) + (Pu — Pa)))

Both of these exhibit interference patterns in the region R and, critically for our understanding
of the situation, the location of the nodes of this interference pattern will be dependant upon the
phase shifts ¢, and ¢4 in both arms of the interferometer. Had the cavities been conventional
measuring devices, no such interference patterns could have been observed. The mixture of the
two distributions loses the interference pattern. It is only when the results of the probe atom

measurements are correlated to the ensemble of atomic locations that the interference effects can
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be observed. This is characteristic of entangled systems, where the interference can only ever be
seen using correlated or joint measurements®.

It is important to note that the choice of whether or not to pulse the probe atoms with the %ﬂ'
pulse can be made after the atomic wavepacket has entered into the region R and had it’s location
recorded on a screen. The information about the phase shift settings must somehow be present in

the atom position measurements before we choose whether to pulse the probe atoms or not.

Quantum erasers The arrangement considered here is similar to the quantum eraser experiments[ESW91,
S7Z97]. It may be argued that, by pulsing the probe atom, we are ’erasing’ the which path infor-

mation and so restoring the interference. The problem is that this implicitly assumes that there is

a matter of fact about which path the atom took, and that the interference appears only because

the information as to which path the atom took is not stored anywhere.

Thus we read in [SZ97]

As long as no information is available about which alternative has been realized, inter-

ference may be observed

This ignores the fact that it is not simply the existence of interference that is the problem. It
is also a problem that the location of the nodes in the interference pattern so clearly depend upon
the settings of the phase shifters in both arms of the interferometer. If there is a matter of fact
about which path the atom took (?which alternative has been realized”), that is if we understand
the term ’information’ in it’s normal usage, then we cannot account for the fact that the atom
is able to avoid locations that depend upon the configuration of both phase shifters. There is a
fundamental ambiguity in [SZ97]’s description of the quantum ’eraser’: is it only the information
about which path the atom took that is erased, or is it the very fact that the atom did take one
or the other path? We are forced, as Bohr warned, to say the atom travels down one path, but

behaves as if it has travelled down both.

3.3.3 Locality and teleportation

We have established that the welcher-weg devices are not conventional measuring devices and
that there are observable consequences of this. We will now examine what affect this has upon
[ESSW92, ESSW93, Scu98]’s criticism of the Bohm interpretation.

The essence of the argument is that when the photon is found in the cavity the atom must

have travelled down that arm of the interferometer

we do have a framework to talk about path detection: it is based upon the local
interaction of the atom with the ...resonator, described by standard quantum theory

with its short range interactions only [ESSW93]

61f interference e [&dts could be seen without such correlations, they could be used to violate the no-signalling
theorem, and send signals faster than light.
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The local interaction between the atom and photon, in terms of the Hamiltonian interaction in
the Schrodinger equation, is here being taken to mean that the atom can deposit a photon in the
cavity only if it actually passed through the cavity.

We can identify two key assumptions that are necessary for the interpretation of the welcher-weg

devices as reliable indicators of the actual path of the atom:

1. This storage of information is a valid measurement, even though it is not a conventional
quantum measurement. The atom can only interact with the welcher-weg device, and deposit

a photon in it, if the actual path of the atom passes through the device.

2. The reason the interference pattern initially disappears is because the cavity stores informa-
tion about the path of the atom. The storage of information implies that there is a matter
of fact, which may be unknown, about which path the atom took, in all realizations of the

experiment.

Local interactions Let us consider why these two assumptions are necessary. The first as-
sumption is based upon the local interaction Hamiltonian between the atom and the cavity field.
However, when the atom is in a superposition, as in the interferometer, the effect of this Hamilto-
nian is to produce an entangled correlation between the atom and the cavity mode wavefunctions.
Part of the atomic wavefunction interacts with each cavity wavefunction. If we took the wavefunc-
tion to be a physically real entity, we could not say that the atom in the interferometer interacts
with only one cavity, we would have to say that the atom interacts with both cavities, in all exper-
iments. If this were the case, then could draw no conclusions about the path taken by the atom
from the location of the photon. To reach [ESSW92]’s conclusion we must argue, as is standard,

that the wavefunction is not physically real but
a tool used by theoreticians to arrive at probabilistic predictions

If one is consistently to take this view, however, one must also apply it to the Hamiltonian inter-
action, which acts upon the wavefunctions. Consequently, the first assumption is not based upon

the

local interaction of the atom with the ...resonator, described by standard quantum

theory with its short range interactions only
In [Scu98], it is stated that

the photon emission process is always (physically and calculationally) driven locally by

the action of the cavity field on the atom

While the emission process can be said to be calculationally driven by the local Hamiltonian acting
upon the wavefunction, to say that it is also physically local is to attribute reality to something

deeper than the quantum level of description. The assumption that finding the photon in one
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cavity implies the atom actually passed through that cavity is an addition to ’standard’ quantum
theory.

In [Scu98], this is made particularly clear. To defend his interpretation of the experiment,
Scully wishes to rule out the transfer of the photon from one cavity to the other, as the atom
traverses the interference region. He argues that the transfer of the photon from one micromaser
cavity to the other, in the Bohm approach, represents a teleportation of energy. This teleportation
of energy is ’'qualitatively different’ and a ’stronger type’ of non-locality to that found in EPR
correlations”.

However, the non-locality of entangled photon states in micromaser cavities has been studied
and has even been suggested to be used in quantum teleportation experiments[BDHT93, BDH'94,
CP94]. In Appendix A and [HM99] we can see that the welcher-weg interferometer involves exactly
the same processes as in EPR entanglement and quantum teleportation, whether one uses the Bohm
interpretation or 'standard’ quantum mechanics. Consequently, Scully’s argument that finding the
photon in the cavity after the interference region has been passed implies that the photon must
have been in the cavity before the interference region was encountered is, again, an argument that

is not part of standard quantum mechanics, and rests upon the assumptions above.

Actual paths of atoms The second assumption is necessary to understand the use of the term
‘information’. If the welcher-weg device stores information about the actual path of atom, this
implies that there is a matter of fact about which path the atom actually takes. The erasure of
such information would simply affect our, real or potential, knowledge of which path the atom
took, but would not affect the actual reality of which path the atom took.

Can we deny this point without losing the interpretation of the welcher-weg devices as reliable
measuring devices? It would seem not, as if we do deny this we find ourselves contradicting the
first assumption. Suppose we interpret the atom having a path only in the experiments where
the probe atoms are not pulsed, but not having a path when the probe atoms are pulsed (and
interference is observed). The problem lies in the fact that the cavities are themselves simply two
level quantum systems. The location of the photon in the cavity, which is taken to represent the
information about the path the atom travelled, is a quantum state of the optical field. If there is
no matter of fact about whether the atom is taking one path or the other, before the measurement
is performed, there is equally no matter of fact about which cavity contains the photon. The
interaction of the atom with the cavity does not create a matter of fact about whether the atom
took one path or the other, so cannot be said to represent a measurement of the atoms location.

So when would the measurement take place that determines whether there is a matter of fact
about the path of the atom? The answer is only when the probe atom is ionized. In other words,

when a conventional quantum measurement takes place. It is not the welcher-weg devices that are

7[SZ97, Scu98] appears to state that EPR correlations can be attributed to ’common cause’ and there is "nothing
really shockingly non-local here’. It is precisely because EPR correlations violate the Bell inequalities that this point
of view encounters considerable di [culties[Red87, Bel87].
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measuring the path of the atom at all. There is no matter of fact about whether the atom travelled
down one path or the other, or any matter of fact about which cavity contains the photon, until
the probe atom is ionized, which cannot take place until after the interference region has been
traversed.

It is in the interference region that the atom changes wavepackets and the excitation of the
cavity modes switches from one cavity to the other in the Bohm interpretation. In other words,
if we deny the second assumption, the ’surrealistic’ behaviour of the Bohm trajectories will take
place only if there is no matter of fact about which path the atom took and which cavity contains
the photon. In which case we cannot conclude that the Bohm trajectories are at variance with the
actual path taken by the atom, as it is not meaningful to talk about the actual path of the atom.
Without the second assumption the addition of the welcher-weg devices to Wheeler’s delayed choice
experiment has had no effect on it’s interpretation.

This demonstrates that these two assumptions are essential to the interpretation [ESSW92] wish
to place upon the welcher-weg devices, and further that neither assumption can be considered part

of 'standard’ quantum theory.

Phase coherence As we have seen, to contradict the Bohm trajectories it is essential that
the welcher-weg devices maintain phase coherence in the entangled superposition. However, this
allows us to display interference effects in the location of the atom that depend upon the settings
of phase shifters in both arms of the interferometer. Such a result seems to undermine both of
these assumptions necessary for [ESSW92]’s interpretation of the welcher-weg devices.

We can emphasise this by removing the phase shifter from one arm and the cavity from the
other. Firstly, let us consider the results of ionizing an unpulsed probe atom. If the unpulsed
probe atom is measured to be in the excited state, we would assume that the atom passed down
the arm of the interferometer containing the cavity, while if the probe atom is measured in the
unexcited state, we would assume that the atom passed down the other arm. These would each
occur with a 50% probability. In other words, half of the atoms could not have interacted with
the phase shifter, and the other half could not have interacted with the cavity.

Now let us consider what happens if we pulse the probe atom. We separate the pattern the atom
makes upon the screen in the interference region R into subensembles based upon the outcome
of the ionized probe atom measurement. These subensembles each display the full interference
pattern, the location of whose maxima and minima are determined by the phase shifter. Now, if
we are to assume that the atom did, in fact, travel down only one path or the other, and could
only interact with the device in the path it travelled through we cannot consistently interpret these
results.

Consider the atom that hypothetically travelled down the arm with the cavity. This deposited
a photon in the cavity, and encountered the screen. Neither cavity nor atom interact locally with

the phase shifter. However if we pulse the probe atom, before ionization, the location of the atom
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in the interference region shows fringes which depend upon the setting of the phase shifter, which
neither atom nor cavity interacted with.

If we consider the atom that hypothetically travels down the arm with the phase shifter, we
find the situation even worse. Now the cavity does not interact with the atom and is left empty.
If we send the probe atom through this empty cavity, then pulse and ionize it, the result of this
ionization is to produce interference patterns, with minima at different locations. If the cavity
never interacted with the atom, how can the result of measuring the probe atom possibly be

correlated to the location of the forbidden zones in the interference patterns?

3.3.4 Conclusion

It seems to consistently interpret these results we must either abandon the notion that there is a
matter of fact about which path the atom takes or abandon the idea that the atom can only interact
with the cavity (or phase shifter) if it actually passes down the same arm of the interferometer.
If either of these concepts are abandoned, however, the interpretation [ESSW92] place upon the
welcher-weg devices is untenable. We are therefore forced to conclude that the welcher-weg devices
do not have the properties necessary to be interpreted as detectors.

If we abandon the second assumption, and we apply the information term (3.2) strictly to the
outcomes of experiments, we can make no inference at all about the actual path taken by the atom.
This takes us to the interpretation urged by Bohr[Boh58] and to ’standard’ quantum theory. Here
only the outcomes of macroscopic measurements can be meaningfully discussed. The macroscopic
phenomena emerges, but cannot be interpreted in terms of microscopic processes. In the case of
the experiments above, the interference effects are predicted by the quantum algorithm, but no
explanation is offered, nor can be expected, as to how they arise. In particular, the single mode
cavities are normal quantum devices, and so cannot be interpreted as reliable measuring devices.

If we abandon the first assumption, how do we understand an atom travelling down one path,
but acting as if it travels down both? We can interpret this in terms of the active information in the
Bohm approach. A trajectory travels down one path, but a wavepacket travels down both paths.
The wavepackets interact with the cavity or phase shifter, according to the local Hamiltonian,
regardless of which path the atomic trajectory actually takes.

Now the entangled state means that the information on the setting of the phase shifter is part
of the common pool of information that guides both the atomic trajectory and the cavity field
mode. When the atom enters the interference region, all the branches of the superposition become
active. The behaviour of the atom is now being guided by the information from both wavepackets
and so can be influenced by the phase information from both arms of the interferometer. However,
the field modes are also being guided by this common pool of information.

If the atom encounters the screen at some location x in the interference region, this is amplified
in some, practically irreversible process, that renders all the other information in the entangled

quantum state inactive. The non-local quantum potential connects the motion of the atomic
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trajectory to the motion of the cavity field mode, so now the excitation of the cavity field is
correlated to the position at which the atom was detected. If the atom is detected at the specific

location X, the active wavefunction for the cavity field modes is now proportional to

$u(X) [1u; 0a) + Pa(X) [0u, 1a)

where 1, (X) and 1¥4(X) are just the complex numbers corresponding to the probability amplitudes
for the actually detected location of the atom at X. This demonstrates how the information active
upon the cavity field modes is correlated to the measured location of the atom through the non-
locality of the quantum potential.

When the probe atom is sent through the cavity, and pulsed, this can be rewritten as

(€4 o (X, ) — ePiapa(X, 1)) |EP29Pa) - 9P, P)

4 (ez¢uwu(X’ tg) + €Z¢d’l/1d(X, tg)) |gPungd>

+lep,,ep,)
2

The probabilities of detection of the states of the probe atoms are therefore
_ el¢d¢d(X, t3) ‘2
Xa t3)2

+ e Pagy (X, t3)]
Xa t3)2

‘ e’b¢u w’u. (X7 t3
R

‘el¢u ¢u (X7 t3
|9Pungd>7‘ePu7ePd> = R

|€Pu79Pd> Jgp..ep,) =
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We can express this as the conditional probabilities
P(ee, gg|X) = 5 (1 + cos (AS(X, t3) + (du — ¢a)))

P(eg,gelX) = 5 (1 —cos (AS(X, t3) + (¢u — ¢a)))

o= N

Correlating the ionisation state back to the location of the atom, using Bayes’s rule, reveals the

interference fringes

P(X|ee,gg) = R(X,t3)* (14 cos (AS(X, t3) + (¢u — da)))
P(Xleg,ge) = R(X,t3)* (1 — cos (AS(X, t3) + (du — da)))

The interference exists as a correlation between the entangled systems. It is usual to regard this
as the probe atom ionization leading to the selection of subensembles of the atomic position which
display interference. As we can see here, we may equally well have regarded the location of the
atom on the screen as selecting interference subensembles in the ionization of the probe atom. The
phase shifts, ¢, and ¢4, do not act upon a single subsystem, rather they form part of the common

pool of information which guides the joint behaviour of both systems.

Information We can modify this to produce a POVM measure of the which-path information
suggested by Wootters and Zurek. Suppose that the resonance between the atomic beam and the

cavities are adjusted, by speeding up the atoms. The transition is no longer

€0) — [g1)
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but becomes
le0) — ar|g1) + 3 [e0)
We then send the probe atoms through the cavities, and ionise them while the atomic wavepacket

is still in the interferometer. The ionisation of the probe atom can now represent a measurement

of the atom’s location. The POVM is

1

1
Ay = 3 af® |pa) (Bal
A = |B1

If we represent the location of the Bohm trajectory in the u-branch by X, and in the d-branch
by X, then the initial probabilities are

P(Xu) =

P(X4) =

N~ N~

giving an initial information of I(X) = 1. The probability of the measurement outcomes are

Pw) = laf
P) = glaf’
PO) = |8

where P(u) is the probability of the u-probe atom ionising, P(d) the d-probe atom ionising, and
P(0) neither ionising.

If either probe atom ionises, the wavepacket in the other branch is deactivated and the correlated
ensemble of atoms in the region R displays no interference. If neither ionises, both wavepackets

become active again and a full interference pattern occurs. The total pattern is

R(X, t3)? (1 +16? cos (AS(X, t3) + (¢ — ¢d)))

The conditional probabilities after the measurement are

P(Xuu) = 1
P(Xgd) = 1
PXJ0) = 5
PXd0) = 5

so the conditional information on the path (X) taken by the atom after the measurement (M) is
2
I(X|M) = |5
which represents the remaining ignorance of the path taken. The gain in information is

I(X : M) = |af?
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The size of the interference fringes are given by |3 \2 =1- |a|2. As we gain more information about
the path, we reduce the size of the interference pattern.
The concept of active information, in the Bohm interpretation, thus provides a natural way to

understand the interference effects in the experiments considered.

3.4 Conclusion

We have considered in detail the relationship between information and interference proposed
in a series of thought experiments. We have found that the concept of ’information’ being used,
although quantified by a Shannon information term (3.2) is not the same as information used
in the sense of Chapter 2. Shannon information represents a state of ignorance about an actual
state of affairs. The measurement in a quantum system cannot, in standard quantum theory, be
interpreted as revealing a pre-existing state of affairs. If we can interpret the term Iy » at all, in
standard quantum theory, it is as our ignorance of the outcome of a particular measurement. It
cannot be used to make inference about the existence of actual properties of quantum objects.

The measurements that must be used, in standard quantum theory, involve macroscopic devices,
for which the phase coherence between the different measurement outcomes is, for all practical
purposes, destroyed. This allows us to replace the entangled pure state with a statistical density
matrix, without in any way affecting the future behaviour of the system. The welcher-weg devices
suggested by [ESSW92, SZ97] do not have this essential feature. It is entirely because they do not
have this feature that they produce the effects in the quantum eraser experiments[ESW91] and that
appear to contradict the Bohm trajectories. However, the interpretation [ESW91, ESSW92, SZ97]
placed upon the welcher-weg devices is not consistent with standard quantum theory, precisely
because they lack this feature, and it seems difficult how this interpretation can be sustained.

The concept of active information, by contrast, provides a natural way of interpreting these
results. If we measure the path taken by the trajectory, we render the information in the other
wavepacket inactive, because of the superorthogonality of the measuring device states. When
the atom encounters the interference region it is guided only by the information in the one
wavepacket, and so cannot display interference effects that depend upon phase differences between
both branches of the superposition. If we do not measure the path taken, then both wavepackets
are active when the interference region is encountered, and the atomic trajectory is guided by
information from both arms of the interferometer.

Active information is clearly different from that given by Iy z. Here we are not talking about
our ignorance of a particular state of affairs (’information-for-us’), but rather a dynamic principle
of how the experimental configuration acts upon the constituent parts of the quantum system
(informing the behaviour of the object’). Nevertheless, it connects to our measurements as,

when we gather information-for-us from a measurement, the dynamic information in the other
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wavepackets becomes inactive. This explains why, in the interference experiments, as we increase
our ’information-for-us’ about the path measurements, we increase the deactivation of the infor-
mation about the phase shifts in the arms of the interferometer, and this leads to the attenuation
of the interference fringes. The Bohm interpretation provides a coherent means of understanding
the information-interference complementarity in experiments such as[WZT79], while welcher-weg

devices do not.
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Chapter 4

Entropy and Szilard’s Engine

In this part of the thesis we will examine the role of information in thermodynamics. We will be
particularly interested in the quantitative connections suggested between the Shannon/Schumacher
measure of information and the thermodynamic entropy. This will require us to analyse in detail
the quantum mechanical version of Szilard’s thought experiment [Szi29] relating entropy to the
information gained by a measurement. This thought experiment has been made the paradigm
argument to demonstrate the information theoretic explanation of entropy[LR90, for example] but
it continues to be strongly criticised[BS95, EN98, EN99, She99).

The structure of this is as follows:

e Chapter 4 will review the attempts that have been made to make a quantitative link between
information and entropy, based upon Maxwell’s Demon and the Szilard Engine. This will be
in some detail, in order to clarify the points that are at issue, and to motivate the analysis in
subsequent Chapters. This will allow us to construct a modified, and quantum mechanical,
form of the ”demonless” Szilard Engine, which will be used to examine the validity of the

various 'resolutions’.

e In Chapter 5 we will make a careful and detailed description of the quantum mechanical
operation of all stages of the Szilard Engine. The only physical restriction we place upon

this Engine is that it must be consistent with a unitary time evolution.

e Chapter 6 adds statistical mechanics to the microscopic motion, by introducing canonical heat
baths and ensembles. No other thermodynamic concepts (such as entropy or free energy) will
be used at this stage. The behaviour of the Engine will then be shown to quite consistent

with the statistical mechanical second law of thermodynamics.

e Thermodynamic concepts are introduced and justified in Chapter 7. It will be shown that
the entropy of the Szilard Engine never decreases. In Chapter 8 the behaviour of the Engine
is generalised to give a complete explanation of why Maxwell’s Demon cannot produce anti-

entropic behaviour. We then show how the other resolutions suggested, where they are
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correct, are contained within our analysis.

Our analysis will show that both the information theoretic resolution, and it’s criticisms, are
incomplete, each concentrating on only part of the problem. When we complete this analysis,
we will show that, despite the formal similarity between Shannon/Schumacher information and
Gibbs/Von Neumann entropy, information theory is both unnecessary and insufficient to give a
complete resolution of the issues raised by the Szilard Engine.

We will now consider the general arguments for a relationship between entropy and information.
Section 4.1 will review one of the issues raised by statistical mechanics, and why this may be
taken to identify entropy with information. Section 4.2 then considers the Szilard Engine version
of Maxwell’s demon. This has been used as the paradigm thought experiment to demonstrate
the relationship between the entropy of a system and the information gained from performing
measurements on the system. The final Subsection will consider a ’demonless’ version of the
thought experiment, used to deny the role of information in understanding the problem. Finally,
in Section 4.3 we review what we believe are the key points of contention in Section 4.2, and how

we propose to address them in Chapters 5 to 8.

4.1 Statistical Entropy

The attempts to derive the phenomenological laws of thermodynamics from classical mechanics
lead to the identification of entropy with a statistical property of a system, rather than an intrinsic
property. Unlike other intensive thermodynamic variables (such as mass or energy) the statistical
entropy is not expressed as the average over some property of the microstates, but is a property of
the averaging process itself. The unfortunate consequence of this is that there may not appear to
be a well-defined entropy of an individual system. So, the Boltzmann entropy of a microstate Sp =
kinW depends upon a particular (and possibly arbitrary) partitioning of phase space, while the
Gibbs entropy S¢ = —k [ plnp depends upon the inclusion of the microstate in a 'representative’
(and possibly arbitrary) ensemble. If we were to choose to describe the partition of phase space
differently, or include the same microstate in a different ensemble, we would ascribe a different
entropy to it.

Attempting to understand how something as fundamental as entropy could be so apparently
arbitrary has lead many to suggest that entropy, and it’s increase, represents a measure of our

ignorance about the exact microstate of the individual system:

the idea of dissipation of energy depends on the extent of our knowledge ... [it] is not
a property of things in themselves, but only in relation to the mind which perceives

them[DD85, pg 3, quoting Maxwell]

irreversibility is a consequence of the explicit introduction of ignorance into the funda-

mental laws [Bor49]
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The entropy of a thermodynamic system is a measure of the degree of ignorance of a
person whose sole knowledge about its microstate consists of the values of the macro-

scopic quantities . ..which define its thermodynamic state [Jay79]

What has happened, and this is very subtle, is that my knowledge of the possible
locations of the molecule has changed ...the less information we have about a state,

the higher the entropy [Fey99]

How this ignorance arises, whether it is a subjective or objective property, and why or how
it increases with time have been argued in many ways. For example, it is often suggested that
the ignorance arises because of the large number of microstates available to macroscopic bodies,
and the difficulty of physically determining exactly which microstate the body is in. Similarly, the
growth of entropy with time is then identified with the difficulty of following the exact trajectories
of a large number of interacting bodies.

A frequent criticism that is raised against this interpretation is that it seems to be implying
that the large number of irreversible processes that surround us (gas diffuses, ice melts, the Sun
shines) are illusory and occur only because of our lack of detailed knowledge of the exact microstate

of the gas, ice cube, or star:

it is clearly absurd to believe that pennies fall or molecules collide in a random fashion
because we do not know the initial conditions, and that they would do otherwise if some

demon were to give their secrets away to us [Pop56]

The discussions and criticisms of this point of view is too large to fully review here [Pop57,
Pop74, LT79, DD85, LR90, Red95, Brig6]. Nor will we be dealing with the problem of the origin of
irreversibility [HPMZ94, Alb94, Uff01]. Instead we will concentrate on a quantitative link between
knowledge (information) and entropy. In particular we will be considering the issues raised by the

following problem:

If entropy is a measure of ignorance, and information is a measure of lack of ignorance,
how is it that entropy increases with time, while our information, or knowledge, also

increases with time?

If we cannot follow the exact microstates of a system, it may appear that our information about
the system is decreasing. The knowledge we have about a system, at some given point in time,
when defined in terms of coarse-grained ’observational states’[Pen70], will provide less and less
information about the system as time progresses, due to coarse-grained 'mixing’. This decrease in
information will be identical (with a sign change) to the increase in the coarse-grained entropy of
the system.

On the other hand, the problem arises as we are constantly increasing our knowledge, or
information, by observing the world around us. Each observation we make provides us with

new information that we did not possess at the earlier time. Does this process of acquiring new
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information reduce the entropy of the world, and should this be regarded as an apparent violation
of the second law of thermodynamics? This is the key paradox which needs to be investigated.
We will quantify our knowledge by using the Shannon-Schumacher measure of information ob-
tained from measurements we perform. The Gibbs-von Neumann entropy is identical in form to this
measure, and so will be used for the thermodynamic entropy (we will avoid using ’coarse-grained’
entropy as we will be dealing with microscopic systems for which ’observational states’ cannot be
sensibly defined). We now need to consider how the gain in information from a measurement can

be related to the change in entropy of the system that is measured.

4.2 Maxwell’s Demon

When we measure a system, we only gain information about it if it was possible for the measurement
to have had several different outcomes. In the case of a thermodynamic ensemble, the measurement
amounts to the selection of subensembles. The potentially anti-entropic nature of such a selection
was first suggested by Maxwell[LR90, and references therein] when he proposed a sorting demon
that would, by opening and closing a shutter at appropriate times, allow a temperature difference
to develop between two boxes containing gases initially at the same temperature. Once such a
temperature difference develops heat can be allowed to flow back from the hotter to the colder,
via a Carnot cycle, turning some of it into work in the process. As energy is extracted from the
system, in the form of work, the two gases will cool down. The result would be in violation of the

Kelvin statement of the second law of thermodynamics:
N