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Abstract

Surprising things happen when information processing is gener-
alised to quantum, rather than classical systems. This paper reviews
some recent results about the nature of information stored in quantum
bits (qbits). An ’informational equivalence’ between ’sameness’ and
’oppositeness’ in classical information fails to hold when those notions
are generalised to quantum information. This has consequences for
the sharing and flow of information within quantum networks.

1 Informational Equivalence of Duplicate Clas-

sical Bits

Alice and Bob are typical quantum information theorists: they have well
stocked laboratories, with state of the art measuring devices, computers and
so forth, and have access to an inexhuastible supply of quantum and classical
objects. They have three noise free communication channels - one of which
allows then to send classical information, in bits, the second for quantum
objects and the third is a telephone to talk to each other about what they’re
doing. When a message from either of the first two channels gets received,
it is not ’read’ immediately, but is stored in a box (or a memory circuit, or
something like that). The receiver then has a number of options as to what
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kind of operation s/he can perform upon the received ’message’, one of which
is ”open the box and have a look” (of course, if it’s a quantum message, the
receiver must also decide how to open the box). For the moment, we will
assume Alice and Bob are dealing with purely classical bits - which have two
states - 0 or 1. If the two bits are both in state 0 or both in state 1, we say
they are in the same state. If one is 0 and the other is 1, they are in opposite
states.

1.1 Same Bit Test

Alice sends Bob a single bit in a box, but does not let Bob know what state
it is in. Bob has to return two bits, each in the same state as Alice’s original
bit. Bob can pass Alice’s bit through whatever logic gates he requires, but
he is not allowed to open the box and look at what the bit is (we don’t want
to make it too easy!).

This test is still quite easy, because Bob just needs one logic gate to solve
this perfectly: the Controlled NOT (CNOT) gate.

A B C D

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Figure 1: Controlled NOT Gate

With the input B = 0 this is often referred to as a FANOUT gate, and
with A = 1 it is a NOT gate.

Bob takes Alices bit, and a second bit prepared in the state 0. Alice’s bit
is fed into the A-input, and Bob’s second bit is fed into the B-input of the
CNOT gate. The two output bits will now be in the same state as Alice’s
initial bit.
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1.2 Opposite Bit Test

The second test requires Bob to return a second bit in the opposite state
to Alice’s original bit. Again, however, the solution is very simple. Bob
requires only a third bit, now prepared in the state 1. After performing the
same operation as for the Same Bit test, Bob simply sends the D-output into
the B input of a second CNOT gate, with the third bit entering the A-input.

1.3 Informational equivalence

Although these tests seem trivial, they illustrate an important feature of
information. Suppose Alice sends Bob a single bit, without specifying the
state of the bit. Bob may have a physical system, but has acquired, as yet,
no information (Bob has complete uncertainty about the state of the bit).
If Alice sends Bob a second, unspecified bit, Bob has two physical systems,
but still no information. However, now suppose Alice phones up Bob and
tells Bob that, whatever state the first was in, the second was in the same
state (we will assume Alice is not lying!). How much information has Bob
acquired? What if Alice said the second was in the opposite state?

The answer is that Bob acquires 1 bit of information. By passing the
two bits through the CNOT gate, A is in the initial state, but D is always
in state 0. Although Bob has no information about the state Alice sent, he
has an absolute certainty about the state of D. For the second case, Bob
performs a NOT upon B, before passing it through the CNOT. By informing

Figure 2: Informational Equivalence

Bob of the correlation between A and B, Alice has reduced the number of the
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Figure 3: The Bloch Sphere

possible states (or Bob’s uncertainty) by 1 bit. Bob converts this correlation
information into a certainty about the state of one of the bits (’using up’ the
correlation). Bob can switch between these states but always has exactly 1 bit
of information about the joint system. The three states are ”informationally
equivalent”. Creating duplicate bits, or flipping those duplicate bits, cannot
be used to increase or decrease the information available. This is why Bob
found the tests so easy: Alice was not requiring Bob to supply any more
information back to her, than she had sent to him in the first place.

2 Quantum Bits

Now Alice and Bob try to do the same thing, but with quantum bits. A
quantum bit (or qbit) is a two dimensional Hilbert space, with basis states
|0 > and |1 >, The general state of qbit is:

Ψ = ei φ
2 cos

ˆ
µ

2

!
|1 > +e−i φ

2 sin

ˆ
µ

2

!
|0 >

often shortened to
Ψ = fi|1 > +fl|0 >

The qbit may be represented by a point on a sphere of unit magnitude (Bloch
sphere). The inner product of two qbits is

< Ψ|Ψ′ >= fi∗fi′ + fl∗fl′

For any given qbit state, there is exactly one other qbit state with which it
has a zero inner product. This other state corresponds to the point in exactly
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the opposite direction on the Bloch sphere. |1 > and |0 > are ’opposite’ to
each other, and as the choice of a basis for |1 > and |0 > is arbitrary, this
may be taken as the quantum generalisation of ’oppositeness’ of bits. A qbit
’opposite’ to |n > will be represented by | − n > . For the inner product
to be 1, the two qbits must at the same point on the Bloch sphere, and will
be in the ’same’ quantum state. If there is an ensemble of qbits, prepared
in different states, the density matrix corresponds to a point lying inside the
sphere.

Now we need the logical operations Alice and Bob can perform upon
qbits, and it turns out that a single gate is sufficient to represent all of them
- the quantum controlled-not[1].

C (a; b; c) = |0 >< 0|A ⊗ IB + |1 >< 1|A ⊗ U (a; b; c)B

U (a; b; c) =

ˆ
eia cos b −eic sin b
e−ic sin b e−ia cos b

!

If we take the basis states of |0 > and |1 > as the ’classical’ states 0 and 1,
we can reconstruct classical logic gates from this1. In particular, the classical
CNOT gate is equivalent to C (0; …=2; …) :

How much information is there in a single qbit? There is a lot more
possibilities for the qbit, than for the bit. Surely, this gives Alice a much
wider range of signals she can send Bob.

However Bob has a problem. Alice sends Bob a single, unknown qbit in
a box. It could be pointing anywhere on the Bloch sphere. When receiving
a classical bit, Bob can simply open the box, find out what it is, and gain
one bit of information. However, for a qbit, Bob must make a measurement,
along a particular axis. If he chooses the conventional axis, he gets the
probabilities

Pr(|0 >) = sin2(
µ

2
)

Pr(|1 >) = cos2(
µ

2
)

and afterwards the qbit is in state |0 > or |1 > respectively.

1In classical logic, there are three input gates which cannot be built from reversible two
input gates. These three input gates can be constructed from two-input quantum gates
that are not equivalent to two input classical gates!
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Although a large number of identically prepared qbits will eventually yield
up the value of µ, Bob doesn’t get any information about ` and Alice could be
sending qbits pointing in different directions. As the measurement described
has only two outcomes, it turns out Bob can get, at most, one classical
bit of information from the transmitted qbit. With an infinite amount of
qbits, Bob can find µ exactly, but this is the same as the infinite amount of
bits necessary to specify a continuous parameter. The average information
conveyed by each qbit is still one bit.[2][3][4]

2.1 Same Qbit Test

This suggests that there is no difference, in information content, between the
classical and quantum bits. However, if we look again at the trivial tests
Alice set, we find Bob has a much harder task. We will judge Bob’s success
at playing the game by a FIDELITY test. If Bob is supposed to produce
a qbit in the state |u >= fi|1 > +fl|0 >, Alice will measure the state he
actually produces in the |u >; |−u > basis, and the fidelity is the probability
of Bob’s qbit passing the test. In order to test a given strategy, we average
this over all the possible states Alice could have chosen.

Bob has a number of strategies.

2.1.1 Random Guesswork

Bob is feeling bored with this silly game. He throws Alice’s bit away and
sends her two bits, each of which he prepares in some random, but identical
state, |n′ >= fi′|1 > +fl′|0 >. When Alice measures Bob’s qbits, the proba-

bility of passing is cos2
‡

θ
2

·
where µ is the angle between the Alice’s and Bob’s

directions. The mean fidelity of each bit is F = 1=2 and the joint fidelity
(the probability of getting both right) FJ = 1=3. While random guesswork
is not a good solution it gives us a baseline to measure the success of other
methods.

2.1.2 Measure and Copy

Bob measures the bit in some basis (for convenience, we use |1 >; |0 > ),
and sends back two bits in the direction the measurement gives. This gives
a density matrix ‰ = |fi|2 |11 >< 11|+ |fl|2 |00 >< 00| and average fidelities
F = 2=3; FJ = 1=2
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2.1.3 FANOUT

Bob thinks the problem might be because he is opening the box to measure
the qbit, and this disturbs the quantum system. So he uses in logic gates
(FANOUT) to copy the qbit, without opening the box. This produced a
perfect solution with classical bits. However, with qbits, the result is F =
2=3, FJ = 1=2 and is no better than ”measure and copy”! What went wrong?

The answer is that FANOUT fails to copy the qbit - instead it creates an
entangled state between the output bits:

FANOUT (fi|1 > +fl|0 >)|0 >= fi|1 > |1 > +fl|0 > |0 >

As a density matrix this is

‰ = |fi|2 |11 >< 11|+ |fl|2 |00 >< 00|+ fi∗fl|00 >< 11|+ fifl∗|11 >< 00|
with diagonal elements equivalent to the ’Measure and Copy’ approach. In
fact the FANOUT gate bears a lot in common with the process of measure-
ment, and is sometimes referred to as a ’measurement’ gate.

2.1.4 Quantum FANOUT and ”no-cloning”

Can we build a quantum FANOUT? If we take an initial, unknown qbit, and
a auxiliary system, prepared in a known state, does there exist any unitary
operation of the form:

CLONE(|n > |Aux0 >) = |n > |n > |Aux(n) >

where |Aux0 > is the initial auxiliary system, and |Aux(n) > is an n depen-
dant ’junk’ output, which works for all values of n? The answer to this was
answered in the negative by Wootters and Zurek[5]. The proof of the non-
existence of CLONE can be found from the unitary operation preserving
the inner product between states

< n|n′ >< Aux0|Aux0 >= (< n|n′ >)2 < Aux(n)|Aux(n′) >

However, the inner product of two states obeys the relation

|< i|j >| ≤ 1

with equality holding only when i = j . The required relationship can only
hold when either n = n′ or when < n|n′ >= 0, but cannot hold for general
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values of n . An obvious case for < n|n′ >= 0, is where n = 1, n′ = 0. So
classical information can be cloned (which is fortunate, as we already have a
FANOUT gate that does this!)

However, it is possible to build imperfect cloning machines, that produce
a fidelity better than simply ’measure and copy’.[6][7][8][9] An example of an
optimal quantum cloning, in which the fidelity of the output is independant
of the input state, is given by the following unitary operation:

|0 > |00 > →
s

2

3
|000 > +

s
1

6
|011 > +

s
1

6
|101 >

|1 > |00 > →
s

2

3
|111 > +

s
1

6
|010 > +

s
1

6
|100 >

For a general input qbit of |n > in the first position, this produces output
qbits in the first and second positions of ‰ = 5=6|n >< n|+1=6|−n >< −n|.
The third qbit is the ’junk’ auxiliary output. The fidelty is F = 5=6 , with
a joint fidelity of FJ = 2=3

2.2 Opposite Qbit Test

What of Alice’s second test? What if Bob has to produce two qbits, but in
opposite directions?

Bob has the same strategies available to him. If he measures Alice’s bit,
and sends back opposite qbits |10 > or |01 >, he gets the same fidelity of as
’measure and copy’ for producing the same qbits. If he runs the qbit through
a FANOUT and a NOT gate, he get the fidelity of ’FANOUT’ for same qbits.

What if he uses an optimal cloner and NOT? Surprisingly, our joint fi-
delity is worse and our opposite bit is terrible!

Fs = 5=6; Fo = 7=12; F j = 2=3
The reason for this failure is that our NOT gate is failing to work in the

way we desired:

NOT (fi|1 > +fl|0 >) = fl|1 > +fi|0 >

It is easy to show that NOT (|n >) is opposite to |n > only if n = 0 or n = 1
(if the input qbit is part of classical logic). Bob needs an operation that
performs:

OPP (|n >) = | − n >

OPP (fi|1 > +fl|0 >) = fl∗|1 > −fi∗|0 >
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Such an operation is not forbidden by the conservation of the inner prod-
uct, as < n|m >=< −n| − m >. However if OPP (|1 >) = |0 > and
OPP (|0 >) = |1 >; then NOT is the only linear operation that satisfies
these conditions (the ’no-spin-flip theorem’).

Still, perhaps there is an imperfect OPP , in the same manner that there
is an imperfect CLONE? It turns out the best that can be done is to build
an anti-cloning machine, that takes an input qbit |n > and attempts to make
output qbits |n > | − n > , succeeding with fidelity F = 2=3 , joint fidelity
FJ = 5=8: [10][11][12]

Now this is particularly interesting - not only is Bob failing Alice’s test,
but trying to produce an opposite second bit is failing worse than a same
second bit. Somehow it seems opposite is not informationally equivalent to
same? Rather than examine proofs of the no-cloning and no-spinflipping
theorems, let us look at the states we are trying to produce - the duplicate
qbits.

3 Duplicate Quantum Bits and Informational

Equivalence

Suppose Alice sends Bob a qbit prepared in a state unknown to Bob. Bob’s
uncertainty is at a maximum, as he has no information on the state of the
bit. Now Alice sends Bob a second qbit, also unknown, but prepared in the
same state as the first qbit. How much more information does Bob possess?

In the classical case, we saw that the answer was one bit. However,
that was clearly related to the fact that we could run both bits through the
FANOUT gate, and put one of them into a definite state. This is clearly not
possible for qbits: if it were, we could simply reverse the process, and clone
a qbit[15].

If we take an ensemble of qbits, in different states eg.

|a|2|00 >< 00|+ |b|2|11 >< 11|
the information known about the ensemble is given (in bits), by

H = 1 + Tr(‰log2‰)

For an N-qbit system, the information known is

HN = N + Tr(‰log2‰)
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For a 1 qbit system, a general qbit is described by:

‰ =

ˆ
|fi|2 fi∗fl
fifl∗ |fl|2

!

The ’general’ qbit could have been a point anywhere on the Bloch sphere,
with uniform probability. We average fi and fl uniformly over the Bloch
sphere, and get a density matrix

‰ =

ˆ
1=2 0
0 1=2

!

In this case the information is zero, which represents the fact that we know
nothing about where on the Bloch sphere a general qbit points. If we knew
the state |n > the qbit was prepared in, we can express the density matrix
in the basis |n >; | − n >, where it becomes

‰ =

ˆ
1 0
0 0

!

and the information is 1 bit, representing a complete knowledge of the state
of the qbit.

For two qbits prepared in the same state |n; n >, the density matrix,
when |n > is integrated over the Bloch sphere, is:

‰(|n; n >) =

0
BBB@

1=3 0 0 0
0 1=6 1=6 0
0 1=6 1=6 0
0 0 0 1=3

1
CCCA

which can be expressed as

‰(|n; n >) =
1

3
(|u; u >< u; u|+ |u+ >< u + |+ | − u;−u >< −u;−u|)

where |u > is an arbitrary point on the Bloch sphere and
|u+ >= 1√

2
(|u;−u > +| − u; u >) .

This is not complete uncertainty. A total lack of knowledge is represented
by

‰min =

0
BBB@

1=4 0 0 0
0 1=4 0 0
0 0 1=4 0
0 0 0 1=4

1
CCCA
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which has information of zero. Instead, the knowledge that we have two bits
that are in the same state gives us H = (2− log 3) = 0:415 bits. This is less
than the 1 bit that correlated classical bits gives us, but more than complete
ignorance. A classical correlation would have given us H = (2− log(2)) bits.

What if they are in opposite states - how much information have we
gained? Two qbits in unknown, opposite states have a averaged density
matix of

‰(|n;−n >) =

0
BBB@

1=6 0 0 0
0 1=3 −1=6 0
0 −1=6 1=3 0
0 0 0 1=6

1
CCCA

or

‰(|n;−n >) =
1

6
(|u; u >< u; u|+ |u+ >< u + |+ | − u;−u >< −u;−u|)

+
1

2
(|u− >< u− |)

=
1

2
‰(|n; n >) +

1

2
(|u− >< u− |)

with |u− >= 1√
2
(|u;−u > −| − u; u >) This has H = (2− 1

2
log 12) = 0:208

bits, exactly half the information of the same states.

3.1 Why don’t we have 1 bit of correlation informa-
tion?

If we expand the pure states, in the conventional basis, we obtain:

Ψ(|n; n >) = fi2|11 > +
√

2fifl

ˆ |01 > +|10 >√
2

!
+ fl2|00 >

Ψ(|n;−n >) = fifl∗|11 > +

ˆ |fi|2 − |fl|2√
2

! ˆ |01 > +|10 >√
2

!

+

ˆ |fi|2 + |fl|2√
2

! ˆ |01 > −|10 >√
2

!
− fi∗fl|00 >

When measured in a different basis to the preparation basis, the same-state
qbits may yield opposite results, while the opposite-state qbits can give the
same results!
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This clearly is a property of non-orthogonality in the quantum measure-
ment process - even if we are sure the states were prepared in same (or
opposite states), we cannot be sure they will both pass/fail (or the opposite)
if the measurement is in a different basis. The essential feature of this is the
non-orthogonality of the states the qbits may have been prepared in. If we
are told that the qbits are prepared in a particular basis, then we can simply
switch our logic gates to operate on that basis, and all our results of classical
logic apply.

3.2 Why does oppositeness convey less information than
sameness?

Although the separation between the two cases is guaranteed by the no-spin
flip theorem, this does not explain why oppositeness conveys so much less
information than sameness.

The wavefunctions and density matrices above, were expressed in the
basis

Φ1 = |11 > Φ2 = 1√
2
(|10 > +|01 >)

Φ3 = 1√
2
(|10 > −|01 >) Φ4 = |00 >

In ‰(|n; n >) , the probability of finding the state Φ3 is zero, while for
‰(|n;−n >); it is one half.

Using the notation
|1 >X = |1>Z+|0>Z√

2
|0 >X = |1>Z−|0>Z√

2

|1 >Y = |1>Z+i|0>Z√
2

|0 >Y = i|1>Z+|0>Z√
2

we can construct the Φ basis from a superposition of opposite states:

Φ1 =
(1− i)

2
(|01 >Z −|10 >Z) + |10 >X −i|10 >Y

Φ2 =
1√
2

(|10 >Z +|01 >Z)

Φ3 =
1√
2

(|10 >Z −|01 >Z)

Φ4 =
(1 + i)

2
(|10 >Z −|01 >Z)− |10 >X −i|10 >Y

however, we can only construct 3 out of the 4 basis from same states:

Φ1 = |11 >Z
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Φ2 =
√

2|11 >X − 1√
2

(|11 >Z +|00 >Z)

Φ4 = |00 >Z

The space of the two qbits SU(2) × SU(2) has two invariant subspaces,
under global rotations: a symmetric subspace, of dimension 3, and an anti-
symmetric subspace, of dimension 1. ’Sameness’ means that the qbits can
only be found within the symmetric subspace, and are evenly distributed
throughout it. While in the classical case, the correlation information re-
stricts the bits to a two dimensional subspace (and therefore represents an
ignorance of log(2) bits) in the quantum case the restricted subspace is 3
dimensional, and the ignorance is log(3) bits. The opposite qbits are dis-
tributed throughout the entire state space - but they are likely to be found
in the antisymmetric subspace, so ’oppositeness’ does give some correlation
information.

What is remarkable, however, is that these differences can only appear
when one looks in an entangled basis, even though the qbits themselves are
always prepared in product states! The measurement is of a joint property
of the qbits - we cannot relabel the parts of the apparatus that apply only
to the second particle, because there are no such parts. If we were to ’flip’
the second qbit in the ’opposite state’ expansion of the of the Φ basis, the
result would no longer be an orthonormal basis, and does not correspond
to a valid measurement (see also [13]). This strange phenomena - entangled
state measurements yielding more information than any combination of local
measurements, even when made on ensembles of product states - has been
dubbed ’non-locality without entanglement’[14]

4 Information and reversible computing

The theory of reversible computation was developed following the discovery
of Landauer’s principle[16], that only logically irreversible operations implied
an irretrievable loss of energy (prior to that, it was thought that each logical
operation involved a dissipation of kT ln(2) per bit). The amount of lost
energy is directly proportional to the Shannon measure of the information
that is erased.

It is often defined as a requirement to ’do work’ to perform the erasure.
This is not strictly accurate. It requires an investment of kT ln(2) free energy,
per bit of information that is stored. At any time in the computation, any bit
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that is in a known state can have this free energy recovered. A known state
is one that is in a particular value, regardless of the choice of input state,
(we may extend this to include always in the same state as an initial input
state). When we examine a computational network, given the program, and
the input state, we can recover all the free energy from the bits that are
known. Other bits may be in determinate states, well defined functions
of the input. It may be argued that these are, therefore, ’known’ but, as
these states are non-trivially dependant upon the input state (eg. (A OR
NOT B) AND (C XOR D)), to extract the energy requires one to find the
value of the bit from the input state ie. to recapitulate the calculation on a
second system, which requires an investment of an equivalent amount of free
energy - so no gain is made in terms of recoverable energy. The objective
of reversible computing is to reduce the amount of the free energy invested
into the calculation that cannot be recovered at the end without losing the
results of the computation.

A reversible calculation may be defined as one which operates, upon an
input state i and an auxiliary system, prepared in an initial state Aux0 ,
to produce an output from the calculation O(i), and some additional ’junk’
information Aux(i):

F : (i; Aux0) → (O(i); Aux(i))

in such a manner that there exists a complementary calculation:

F ′ : (O(i); Aux(i)) → (i; Aux0)

The existence of the ’junk’ information corresponds to a history of the in-
tervening steps in the computation, so allowing the original input to be re-
constructed. A computation that did not keep such a history, would be
irreversible, and would have lost information on the way. The information
lost would correspond to an amount of free energy invested into the system
that could not be recovered.

However, Aux(i) is not generally known, being non-trivially dependant
upon the input, i; and so represents free energy that cannot be recovered. A
general procedure for discovering the complementary calculation F ′ can be
given like this: take all the logical operations performed in F , and reverse
their operation and order. As long as all the logical operations in F are



is always possible to make a computation reversible. However, this is not
immediately very useful: although we could recover the energy by reversing
the computation, we lose the output O(i) in doing so.

Bennett[17][18] showed that a better solution was to find a different re-
verse calculation F”

F ′′ : (O(i); Aux(i); AuxO) → (i; Aux0; O(i))

The only additional unknown information is O(i), which is simply the output
we desired (or extra information we needed to know). A general procedure
for F”, is: copy O(i) into a futher auxiliary system AuxO by means of a
FANOUT gate, then run F ′on the original system. This has also been shown
to be the optimal procedure[19][20] for F”. We call such a calculation, G,
TIDY. All classical reversible computations are TIDY.

Straight away, we should notice a problem! The universal FANOUT gate
does not exist for a quantum computation.

Clearly, in the case where the output states from a quantum computer
are in a known orthogonal set, then the quantum computation can be made
tidy. In fact, for other reasons, having orthogonal output states was initially
taken as a requirement on a quantum computer, as it was deemed necessary
for reading out the output. This was suggestive not of a general quantum
computation, but of limited quantum algorithmic boxes: each connected by
classical communication. However, developments in quantum information
theory have suggested that distributed quantum information may be desir-
able - in particular, a more general conception of quantum computation may
be required which takes inputs from different sources, and/or at different
times. In Figure 5 we see an example of this - Alice performs some quantum
computation, and stores the result of it in a ’quantum data warehouse’. At
some later time, Bob takes part of these results as an input into his own
computation. We are going to take our definition of a quantum computation
as: 2

UC(|i > |Aux0 >) → |O(i) > |Aux(i) >

so that the ouput is always in a separable state (in other words, we regard
the ’output’ of the computation as the subsection of the Hilbert space that is

2There is further complication when entanglement enters the problem. When part of
an entangled state is transmitted, the loss of free energy is always greater than the entropy



Figure 4: Distributed Quantum Computing

interesting, and the ’auxiliary’ as everything that is uninteresting. If the ’out-
put’ were entangled with the ’auxiliary’ space, then there would be additional
information relevant to the ’output’, contained in the super-correlations be-
tween ’output’ and ’auxiliary’ spaces). As any quantum computation must be
performed by a unitary operation, all quantum computers must be reversible.
But are they TIDY?

If this model of computation is classical, then each time data is sent to
the central database, the local user can FANOUT the data before sending it,
and tidy up their computer as they go along. The only energy commitment
is: total input, plus stored data. The difference between connected classical
algorithmic boxes and a single classical computation is a trivial distinction,
as the computation may be tidied along the way.

Considering a general quantum operation, unitarity requires that the in-
ner products between different input states and between the corresponding
output states is unchanged by the computation. Reversibility must always
hold.

REV ERSIBLE : < i|j >< Aux0|Aux0 >=

< O(i)|O(j) >< Aux(i)|Aux(j) >

TIDY : < i|j >< Aux0|Aux0 >< AuxO|AuxO >=
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< i|j >< O(i)|O(j) >< Aux0|Aux0 >

We can eliminate < Aux0|Aux0 >= 1 and < AuxO|AuxO >= 1, leaving
only three cases.

4.1 Orthogonal Outputs

The output states are orthogonal set:

< O(i)|O(j) >= –ij

Reversibility requires the input states to be an orthogonal set < i|j >= 0, and
the TIDY condition will hold. This is not too surprising, as an orthogonal
set of outputs can be cloned, and so can be tidied using Bennett’s procedure.

4.2 Orthogonal Inputs

The input states are orthogonal set < i|j >= –ij, but the output states are
not. To satisfy unitarity, the auxiliary output states must be orthogonal.

< Aux(i)|Aux(j) >= –ij

There is a unitary operator for tidying the computation, without losing the
output. However, this tidying computation is not Bennett’s procedure. If we
cloned the auxiliary output, and run the reverse operation, we would lose the
output, and be left with the ’junk’ ! Whether there is an equivalent general
procedure for obtaining F ′′ is not known.

One obvious method is to examine the resulting auxiliary output states,
construct a unitary operator from

UG|Aux (i) ; O (i) >= |Aux0; O (i) >

and decompose UG into a quantum logic circuit. However, it is not clear
whether the operator can be constructed without explicitly computing each
of the auxiliary output states - which may entail running the computation
itself, for each input, and measuring the auxiliary output basis. Alternatively,
examine the form of the auxiliary output (eg. (A OR NOT B) AND (C XOR
D)) ) and devise a logic circuit that reconstructs the input state from this.
This simply restates the problem: although some such circuit (or UG) must
exist, is there a general procedure for efficiently constructing it from only a
knowledge of UC?
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4.3 Non-orthogonal Inputs

The input states are a non-orthogonal set. This corresponds to Bob’s position
in the quantum distribution network of Figure 5.

If we look at the requirements for a tidy computation, this leads to:

< O(i)|O(j) >= 1

The output is always the same, regardless of the input! Obviously for a
computation to be meaningful, at least some of the output states must depend
in some way upon the particular input state. So there does not exist any
non-trivial (|O(i) > 6= |O(j) >) computations of the form

G : |i > |Aux0 > |AuxO >→ |i > |Aux0 > |O(i) >

for which < i|j > 6= –ij:
3

It should be clear: this does NOT mean useful, reversible quantum com-
putations of the form

F : |i > |Aux0 > |− > |Aux(i) > |O(i) >

do not exist when < i|j > 6= –ij - simply that such computations cannot be
’tidy’. For such computations, not only is the free energy used to store the
auxiliary output unrecoverable, but also the input state cannot be recovered,
except through losing the output. For our distributed network, this means
that not only can Bob not ’tidy’ his computation, but he cannot restore
Alice’s data to the database.

5 Summary

We have examined the notion of ’sameness’ and ’oppositeness’ when applied
to quantum information and found that the ’informational equivalence’ of
these in the classical case no longer hold. Quantum information cannot be
copied or duplicated, in the manner of classical information.

This has a surprising consequence for computation. The flow of informa-
tion in a classical computation can be broken down into separate algorithms,
with these algorithms passing classical information between them. Such al-
gorithms can be reversibly, and tidily, implemented. If the overall calculation

3It is interesting to note that the ’no-cloning’ theorem is a special case of this.
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requires input data in separate places and times, it can easily be broken down
into separate algorithms at each place and time, with classical communica-
tions between them. This is only because such classical information can be
duplicated in an ’informationally equivalent’ manner.

Existing quantum algorithms have been designed on the basis of replacing
similar classical algorithms. They therefore take a set of classical inputs, at
one place and time, and produce a set of classical outputs, and so can be
implemented in a tidy manner. However, each quantum algorithm itself
cannot be broken down into sub-algorithms.

A more generalised conception of the flow of information in a quantum
system appears necessary. Information enters and is shared at separate times
and places, and cannot necessarily be processed by tidy sub-algorithms, as
the information exchanged is not necessarily classical in nature. Even where
a tidying procedure can exist, it is not clear that a general and/or efficient
program for implementing this procedure is available.

”Oppositeness” and ”Sameness” are well defined, conceptually simple,
relationships between qbits, yet there are no physical systems that can im-
plement these as operations such as OPP and CLONE. We must therefore
be very careful before assuming which logical ideas can still be relied upon
when trying to understand the nature of information in quantum processess.

References

[1] DiVincenzo DP, cond-mat/9407022

[2] Schumacher B, Phys Rev A, Vol 51 No 4, 2738-2747 (1995)

[3] Jozsa R, Shumacher B, J Mod Optics, Vol 41 No 12, 2343-2349 (1994)

[4] Holevo AS, Prob Inf Trans, Vol 9, 110, 177 (1973)

[5] Wootters WK, Zurek WH, Nature Vol 299, 802-803 (1982)

[6] Buzek V, Hillery M, Phys Rev A, Vol 54 No 3, 1844-1852 (1996)

[7] Gisin N, Massar S, Phys Rev Lett, Vol 79 No 11, 2153-2156 (1997)

[8] Buzek V, Braunstein SL, Hillery M, Bruss D, Phys Rev A, Vol 56 No 5,
3446-3452 (1997)

19



[9] Bruss D, DiVincenzo DP, EKert A, Fuchs CA, Macchiavello C, Smolin
JA Phys Rev A, Vol 57 No 4, 2368-2378 (1998)

[10] Gisin N, Popescu S, Phys Rev Lett, Vol 83 No2, 432-435 (1999)

[11] Buzek V, Hillery M, Werner RF, Phys Rev A, Vol 60 No 4, R2626-R2629
(1999)

[12] Song DD, Hardy L, quant-ph/0001105

[13] Massar S, quant-ph/0004035

[14] Bennett CH, DiVincenzo DP, Fuchs CA, Mor T, Rains E, Shor PW,
Smolin JA, Wootters WK, Phys Rev A, Vol 59, 1070 (1999)

[15] Pati AK, quant-ph/9911090

[16] Landauer R, IBM J Res Develop, Vol 5, 183-191 (1961)

[17] Bennett CH, IBM J Res Develop, Vol 17 525-532 (1973)

[18] Bennett CH, Int J Theor Phys, Vol 21, 905-940 (1982)

[19] Li M, Tromp J, Vitanyi P, Physica D, Vol 120 No 1-2,168-176 (1998)

[20] Li M, Vitanyi P, Proc Roy Soc Lon A, Vol 452, 769-789 (1996)

20


