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Abstract.

The orthogonal Clifford algebra and the generalised Clifford algebra, Cn,
(discrete Weyl algebra) is re-examined and it is shown that the quantum

mechanical wave function (element of left ideal), density operator (element
of a two sided ideal) and mean values (algebraic trace) can be constructed
from entirely within the algebra.  No appeal to Hilbert space is necessary.

We show how the GNS construction can be obtained from within both
algebras. The limit of Cn as n→ ∞ is shown to be the extended Heisenberg

algebra.  Finally the relationship to the usual Hilbert space approach is
discussed.

 1.  Introduction.

In my study of the structure of Clifford algebras particularly in regard to the role they
play in quantum mechanics through Pauli spinors, the Dirac spinors and Penrose's
twistors, I was struck by how all the relevant results could be accounted for from within
the algebra.  There was no need to leave the algebra and to construct an external Hilbert

space upon which the elements of the algebra were deemed to act when they play the role
of observables.  Of course all of these algebras are finite and non-nilpotent so that they
are easily treated by standard algebraic analysis.  My original thoughts on these topics

can be found in Frescura and Hiley (1980, 1984 and 1987).

However when it comes to the Heisenberg algebra these techniques appear not to be

applicable because this algebra is nilpotent.  However the earlier work of Schönberg
(1957) and the later ideas of Frescura and Hiley (1989) and Hiley (1991) suggested there
was such a possibility provided one extended the algebra (Hiley 2001).  Considerable
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clarification of the meaning of this specific extension has been achieved by exploring the

finite discrete Weyl algebra1 Cn. (Morris 1967 and Hiley and Monk 1993). The
importance of these algebras for topic of discussion in this paper is that in the limit as n
→ ∞ the algebra contains the Heisenberg algebra.  These algebras are finite so that the

same techniques used in Clifford algebras can be directly applied.  Thus we have a
unified way of dealing with the basic algebras that lie at the heart of quantum mechanics.

These results have only intensified my curiosity as to why most if not all of the results
can be obtained without seemingly the need to resort to Hilbert space. This goes against

the prevailing orthodoxy that appears to insist that quantum mechanics cannot be done
except in the context of a Hilbert space.  Yet there have been other voices raised against
the necessity of Hilbert space.  Von Neumann himself wrote to Birkoff (1966) writing "I

would like to make a confession which may seem immoral: I do not believe absolutely in
Hilbert space any more."  (A detailed discussion of why von Neumann made this
comment can be found in Rédei 1996).

But there are more important reasons why an algebraic approach has advantages. As
Dirac (1965) has stressed, when algebraic methods are used for systems with an infinite

number of degrees of freedom (e.g., field theory), we can obtain solutions to some
physical problems that give no solution in the usual Schrödinger picture.  This possibility
arises because in these systems the equivalence between the Schrödinger representation

and the Heisenberg representation no longer holds.  Indeed in field theory there is no
longer one unique representation.  There exist many inequivalent representations and
these give rise to more general structures as has been pointed out by Emch (1972) and

more recently in Haag (1992).

These works are of a more mathematical nature but from the point of view of physics
what emerges is that the density operator, , rather than the wave function, plays a

fundamental role.  This means we have a natural way of describing more general

quantum processes that involve, for example, thermal systems. Systems described by
wave functions then correspond to the special case when 2 =  which means the system

is effectively at zero temperature.  But it is not merely a question of the appearance of
non-zero temperatures.  As Prigogine (1994) has already pointed out, nonintegrable
systems give rise to diffusive terms that correspond to the symmetry breaking in time.

Such systems cannot be described in terms of wave functions.  The only possible way of
describing such systems is through the density operator.

                                                
1 These algebras are called generalised Clifford algebras by Morris (1967)
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While all the important new features that arise in the algebraic approach involve an

infinite number of degrees of freedom even in the case of systems with a finite number of
degrees of freedom we find new features that are rarely discussed in the physics
literature.  One such example, which we shall discuss later, is the appearance of algebraic

spinors.  We show that these spinors are a generalisation of the ordinary spinor, which
have new mathematical implications that are ignored in the usual approach.

This generalisation is not only an enrichment of the mathematics.  Following on from the
work of Frescura and Hiley (1980a, 1980b), Monk and Hiley (1998) have pointed out that
the algebra provides a very different perspective on the nature of quantum processes.  In

fact by emphasising the purely algebraic aspect of the approach we remove the
distinction between operator and operand and this allows us to provide an interpretation
in terms of the notion of process rather than in terms of particles and/or fields in

interaction. These ideas were developed to explore connections with non-commutative
geometry but we will not develop these ideas here (See Hiley 1991).

Indeed it is not the purpose of this paper to attempt to justify this more general and
speculative position here.  Rather we want to explore the mathematical consequences of
adopting this more general position by bringing out its relationship to the usual approach,

a feature that is generally lost in the many details provided, for example, in excellent two
volume treatise by Bratteli and Robinson (1979).  In particular we want to present a
simpler approach through which we can see what results depend only on the structure of

the abstract algebra, what features depend on a specific representation, usually a matrix
representation, and what features require the construction of a Hilbert space.

To maintain generality we start by recalling the main properties of an abstract * algebra.
We then show a how a measure, ω, called a weight is introduced, which plays the role of

the state. ω is a functional, mapping elements of the algebra onto the real field. It is not

difficult to show that this is equivalent to introducing the density operator in the usual

approach

To motivate the approach we first explore the orthogonal Clifford algebra by showing

how primitive idempotents play a crucial role in this approach.  We use these
idempotents can be used to construct minimal left and right ideals.  These ideals are
spanned by algebraic spinors and these elements play the role of 'wave functions' in the

Hilbert space formalism.  But it must be emphasised these elements are contained entirely
within the algebra and no external vector space is needed.  We have already stressed this
point in Frescura and Hiley (1980a).  In this paper we show how these same ideals are
generated in the standard algebraic approaches described in Haag (1992), and in Emch
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(1972). As the aim of this paper is mainly pedagogic, we rely heavily on the theorems

proved in those volumes, particularly the latter and will not reproduce them here.  We
then go on to illustrate how these methods can be to specific example that use two of the
simplest Clifford algebra R1,1 and H.  R1,1 is the Clifford algebra of a relativistic space-

time with one space dimension while H is the quaternion algebra.  We choose these not
for physical reasons but because they are the simplest examples in which to demonstrate
the principles involved.  We also show how the density operator is constructed and the

role it plays in the whole structure.

We then widen the discussion to the discrete Weyl algebra Cn (Weyl 1931 and Monk and

Hiley 1993) ultimately generalising to the symplectic Clifford algebra (Crumeyrolle
1990).  This enables us to extend the discussion to include the Heisenberg algebra.

We bring out clearly what is involved in this structure by first exploring C3. In the
mathematics literature this gives the structure of the nonions first introduced as a
generalisation of the quaternion many years ago by Sylvester (1884).  As the

generalisation to higher n is straight forward but tedious we finally discuss the limit as n
→∞ to include the Heisenberg algebra to make contact with standard quantum

mechanics.  In doing this we show how the algebraic approach is related to the Hilbert
space approach.

Finally we show how the density matrix can be written as a vector in a higher
dimensional space, which can be mapped into a Hilbert space.  This is the so-called GNS
construction, which arises in a very straightforward manner in the algebraic approach.

We are then immediately able to connect up with the thermal field theory approach of
Umezawa (1993) that exploits the rich properties of bialgebras.  Physically this approach
allows a description of the thermal properties of quantum processes.

2.  The Algebra.

Since our main intention of the paper is pedagogical we begin by outlining the properties

of the general algebra within which we will work.   Recall that a linear algebra, A, is a

vector space with (i) addition A + B ∈ A, (ii) multiplication by a scalar, A ∈ A,  is an

element of the real or complex field, (iii) together with a product AB ∈ A.  We will

assume the product to be associative. Furthermore we will initially consider the algebra to
be of finite rank, n, with a finite basis {ei}.
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Since we require the analogue of a Hermitian conjugate we assume the algebra, A, is

equipped with an involutive anti-automorphism defined by *: A → A with the following

properties :

For  ∀ A, B ∈ A

(A*)* = A, ( A)* = *A*  ∈ C

(A + B)* = A* + B* (AB)* = B*A*

We will further assume the following two requirements are satisfied,

(1)  For each A ∈ A, ∃ B in A such that A*A = B

(2)  A*A = 0 ⇒ A = 0.

So as not worry too much about the abstract nature of this algebra, it is useful to keep in

mind a matrix algebra with Hermitian conjugation defined.

3. The Density Operator.

3.1 The Algebraic preliminaries.

We need some way of obtaining numbers from this algebra that will allow us to identify

with expectation values used in quantum mechanics.  We use a analogous method to that
used in set theory by introducing a functional  such that

: A → ℜ or C ∀ A ∈ A such that (A) = ,  ∈ ℜ or C

 is a positive linear functional (called the expectation or state functional) satisfying,

( A + B) = (A) + ( ); ( A) = (A) and (A*A) ≥ 0

If the algebra has a unit, 1, then we choose (1) = 1. This means that the state is

normalsed. The collection of all linear functionals over A forms the dual space A* of the

algebra.

Now for ∀ A ∈ A, we have a real or complex number (A) depending linearly on A

with (A*A) ≥ 0.  This enables us to define a Hermitian scalar product through
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A B = A∗B( ) A, B ∈ A. (1)

The collection of all positive linear functionals over A is the positive cone A*(+) of the

dual space A* of the algebra.

In A*  is called 'extremal' if it cannot be decomposed into a linear combination of two

others.  These extremal functionals are called 'pure states'. Thus in general we can form

(A) = i i(A)
i =1

r

∑ with i = 1
i

∑

where i are a set of extremal states.

As the algebras we consider in this paper are non-nilpotent, they have a set of
idempotents. We can relate the extremal states to the primitive idempotents of the algebra

in the following way. If { i} are a set of primitive idempotents2, we can write 1 = i
i =1

r

∑
where i j = ij j. Since (1) = 1 we have

(1) = i i(1) =
i =1

r

∑ i i j
j =1

r

∑
 

 
  

 

 
  =

i =1

r

∑ i i( j)
i , j =1

r

∑

This defines the condition ωi(εj) = ij so that the condition i = 1
i

∑  is satisfied. In this

way we establish a one-to-one correspondence between extremal states and primitive
idempotents in the algebra.

We emphasise that through out this discussion we remain entirely within the algebra A

even though the precise choice of the functional  is left open at this stage.  However if

we are thinking in terms of a matrix algebra, then we can think of the linear functional as
defining the trace.  However it is not necessary to find a matrix representation of an

algebra to define the invariant concept of a trace.  For a finite algebra the trace can be
evaluated by examining the coefficients of the characteristic polynomial of the algebra.
A detailed discussion of this technique as applied to the algebras treated in this paper will

be found in Frescura and Hiley (1981).

                                                
2 An idempotent  is primitive iff there does not exist two idempotents 1, 2 such that  = 1 + 2.  An

idempotent is primitive iff A  =  where A ∈ A and  ∈ Z the centre of A.
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3.2  The Physics.

In quantum mechanics we are interested in expectation values.  If the system is described
by a pure state with wave function (r, t) then the expectation value is defined through

the inner product

A = A = ∗(r,t)A (r,t)d3r∫

where the assumption of the continuity of the wave function (r,t) forces us into an

abstract Hilbert space.  In what follows we will not make this assumption and will work
completely in the algebra.  Thus Hilbert space in not essential to deal with spin systems

such as the Pauli spinor, the Dirac spinor and the twistor.

In the usual approach a system in a mixed state requires a density matrix.  In this case the

expectation value A = i i
i =1

r

∑ A i  can be written as

A = Tr( A) (2)

where  is the density operator with the properties that † = , Tr( A* A) ≥ 0 and

Tr( ) = 1.

Now in the usual approach using Hilbert space we always have to make a separation
between the algebra of observables and the vector space on which the observables

operate, but when the system is described by a finite algebra A, there is no need to

introduce this extra external space. Everything can be done within the algebra as there is
a suitable vector space already contained completely within the algebra.  Indeed there are
a set of subspace of this vector space and these correspond to the minimal left ideals of

the algebra. There is also a corresponding dual vector subspace, namely, the minimal
right ideals.  It is through these ideals that one can describe the physical properties of the
physical system without leaving the algebra. (See Frescura and Hiley 1980a, 1980b, Benn

and Tucker 1983 and Monk and Hiley 1998)

Let us recall how this can be done.  Recall that a left ideal, IL consists of a set of elements

K such that

IL = {K ∈ A | AK ∈ IL | ∀ A ∈ A} (3)
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These are just the algebraic spinors discussed in Frescura and Hiley (1980a).  They are
generated by the primitive idempotents introduced above.  For example, if i is a

primitive idempotent, then a minimal left ideal IL is generated as follows;

K = A i ∀ A ∈ A  and  K ∈ IL

Now a right ideal IR is defined through

IR = {K ∈ A | KA ∈ IR | ∀ A ∈ A} (4)

So that a right ideal IR can also be generated by i giving

K ' = iA ∀ A ∈ A  and   K ' ∈ IR

Since ( i)* = i we can generate a right ideal that is dual to the left ideal and is defined

through

K* = i A* ∀ A* ∈ A

Thus if A ε IL and B* ε IR then equation (1) becomes

B∗A( ) = B A (5)

where B A ∈ C.

In order to make contact with the expectation values used in physics, the pure state 'wave

function' is thus replaced by an element of the minimal left ideal and its Hermitian
conjugate is replaced by an appropriate element of the right ideal.  Then if B  ∈ IL and

B * ∈ IR,

A = B* AB( ) ≡ A = Tr A( ) (6)

where  is the density operator for the pure state.  We can now construct a density

operator as a element in the algebra as follows:

A = B∗ AB( ) = AB B∗( ) = A( ) = A( )

Here the density operator is
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 =  B  B * (7)

so that the density operator can be written as an element of the algebra, A. We can also

regard B as the 'square root' of the density operator, B = .

Let us make explicit the role of the primitive idempotent by writing

i = A iA* ∀ A  ∈ A

Thus we see that the density operator is an element of a two-sided ideal subject to the
conditions that i is a positive and ( i) = 1.  This puts a normalisation constraint on A.

We can check that this density operator actually does correspond to a pure state by
showing directly that i  itself is idempotent.  In fact

i
2 = (A iA*)(A iA*) = A( iA*A i)A = A iA* = i

where  ∈ ℜ or C. i can always be re-defined to absorb .

 In the case of the mixed state we have

A = i i (Bi
∗ ABi ) = i

i =1

r

∑
i =1

r

∑ Tr iA( ) ≡ Tr A( ) (8)

where the density operator takes the form

= iBiBi
*

i=1

r

∑ = i Bi( )
i =1

r

∑ i Bi
*( ) (9)

If we are able to write the density operator in the form = DD*  and we will show how

this can be done later, then we can write

A = ADD*( ) = D*AD( ) ≡ Ψ A Ψ (10)

Thus even in a mixed state we can describe the system by a single vector D.  This is
equivalent to replacing the density matrix as a single 'wave function' Ψ  in the usual

Hilbert space formalism. Thus we have the possibility of describing a thermal system by

a wave function implying that this wave function is a function of temperature.  In other
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words the wave function becomes a function of temperature.  This is what is called the

GNS construction (see for example Emch 1972).

From these results we see that the algebraic approach gives primary significance to the

density operator and that this operator lies entirely within the algebraic structure itself.
The 'wave function' is replaced by an element of the left ideal, which, as we have seen, is
an element of the algebra. Thus at least for finite algebras the Hilbert space is an external

auxiliary feature that is not essential to describe quantum systems. Thus we can regard
the wave function simply as a device to enabling us to calculate expectation values using
familiar mathematics and not as some feature describing the state of the system.

This whole approach allows us to start from the more general mixed state, seeing the pure
state as a particular rather simple state.  Methodologically this is much more satisfactory

than the usual approach because we are not faced with the need to generalise the
formalism when we find we have to deal with more general systems that require 'outside'
factors to somehow destroy coherence and form mixed states.  Indeed the physicist's

emphasis on the wave function as being a description of the state of a quantum system
and therefore a primitive element of the description may be too restrictive (See Prigogine
1994).

A more general approach based on the algebra as suggested by Monk and Hiley (1998)
has the possibility of avoiding some of the interpretation problems in quantum

mechanics. However this comment should not be taken to imply that this new approach
will enable us to solve all the problems of interpretation.  It does not. What it does is to
open up another way of looking at quantum phenomena in which the algebra itself is

playing a primary role.  In other words singling out the density operator as the primary
feature of the mathematics opens up the possibility of giving a different meaning to the
formalism (See Fernandes and Hiley 1997 and Brown and Hiley 2000).

As I have argued elsewhere, this approach suggests that a notion of process rather than
particles/fields-in-interaction should be taken as basic (Hiley 1995). In a process based

philosophy there are no separately existing objects.  They are invariants of the total
unfolding process. Here the wave function is regarded as a transition probability
amplitude rather than a function of state of some system. As Bohr insisted, there is no
sharp separation between subject and object so we should have no sharp separation

between operator and operand. The mathematics of the algebraic approach reflects these
notions and makes no such distinction. Thus we do not have 'operators' playing the role
of 'observables' which are to 'act' on vectors in a different abstract space.  All aspects of

the process are united in the same structure described by elements of the same algebraic
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structure, elements that only have meaning in the context of the total algebra.  This

approach has some interesting consequences that have already been discussed in some
detail by Hiley and Monk (1993) and will not be discussed further here.  The emphasis in
this paper will be on those aspects of the algebraic structure that are relevant to this

general discussion.

4.  Minimal Left Ideals, Algebraic Spinors.

 
4.1  Pure States.

Let us now illustrate how these ideas work by considering a finite, linear *algebra on
which a state  is defined.  We require to find a set of minimal left ideals.  We will not

follow the techniques based on the characteristic polynomial which have already been
outlined in Frescura and Hiley (1978).  Rather we follow the method that used by Emch
(1972) and is essentially based on the fact that i( j) = ij as discussed earlier.  They

produce exactly the same results but this method is the one conventionally used in
algebraic quantum mechanics. (See, for example, Haag 1992)

We can construct left ideals by solving the equation (B*K) = 0 for K and for all B* ∈
A.  Here we are using the definition

ILω = K ∈ B*K( ) = 0,∀B ∈{ } (11)

to construct the left ideals. To show this definition does in fact produce a left ideal take

any A and B in A and any K ∈ Lω and use associativity to establish

A* BK( )( ) = B*A( )*
K( ) = 0 (12)

showing that Lω is a left ideal in A. The left ideal generated in this way is sometimes

called the Gel'fand ideal.

Similarly a right ideal can be generated by the sub-set

Rω = R ∈ RB*( ) = 0, ∀B ∈{ }

4.2.  A Simple Example to illustrate these Ideas.
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As the main purpose of this paper is pedagogic, I will now demonstrate how these ideas
work in a simple real Clifford algebra R1,1.  This example is not without physical meaning
as it forms the basis of relativity in one spatial dimension, and one time dimension.  It is

the background structure to spin networks and relativity discussed by Kauffman (1991).

The algebra is characterised by the multiplication table below

1 e1 e2 e12

e1 1 e12 e2

e2 −e12 −1 e1

e12 −e2 −e1 1

with e1* = e1 ; e2* = − e2 ; e12* = e12.

Define the state 1 by

1 1+ e1 + e2 + e12( ) = − (13)

It is easy to show using 1(B*A) = 0, that

1 1+ e1
* + e2

* + e12
*( ) a 1 + e12( ) + b e1 + e2( )( )( ) = 0

confirming that 1 produces an element in a left ideal L1 defined by

ΨL1 = a 11 + b 21 (14)

where 11 = 1
2 (1 +  e12) and 21 = 1

2 (e1 +  e2 ).

The element in the corresponding right ideal can be shown to be

ΨR1
= a*

11 + b*
12 (15)

where 11 = 1
2 1+ e12( )  and 12 = 1

2 e1 − e2( )

Then we can form
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1 ΨR1
*ΨL1( ) = ΨR1 ΨL1 = a

2 + b
2

which is unity for a normalised state.

We now construct a density operator from elements in these ideals.  Recalling the
definition of the density operator defined in section 4.0, we find that this density operator
is

1 = ΨL1ΨR1 = 1
2 a

2 + b
2( )1+ ab∗ + a∗b( )e1 + a∗b − ab∗( )e2 + a

2 − b
2( )e12[ ]

= a
2

11 + ab*
12 + a*b 21 + b

2

22 (16)

We can generate a second set if elements in second left ideal by using the state

2 1+ e1 + e2 + e12( ) = + (17)

so that

2 1+ e1
* + e2

* + e12
*( ) c 1 − e12( ) + d e1 − e2( )( )( ) = 0

producing the element of the  left ideal, ΨL2 defined by

ΨL 2 =  c 22 + d 12 . (18)

where 22 = 1
2 (1 - e12) and 12 = 1

2 (e1 -  e2).

The corresponding element in the right ideal is

ΨR2
= c * 22 + d * 21 (19)

where 22 = 1
2 1− e12( ) and 21 = 1

2 e1 + e2( ) .

Then we find

2 ΨR2
*ΨL 2( ) = ΨR2 ΨL2 = c

2 + d
2

while the density operator is
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2 = ΨL2ΨR2 = 1
2 c

2 + d
2( )1 + cd∗ + c∗d( )e1 + cd∗ − c∗d( )e2 − c

2 − d
2( )e12[ ]

= d
2

11 + c*d 12 + cd*
21 + c

2

22 (20)

We see immediately that the two left ideals are generated by the idempotents

11  =  1
2 (1+ e12)   and 22  =  1

2 (1− e12)   

 so that    11  + 22  = 1 and 11. 22 = 0.

Since these idempotents are primitive we have generated two minimal left ideals. These
are the results presented in Frescura and Hiley (1980a).  A more lengthy discussion of the

Pauli Clifford will be found in Frescura and Hiley (1978).

4.3  A Matrix Representation.

These results can be made clearer if we consider the following matrix representation
although these matrix representations are not necessary in general;

e1( ) =
0 1

1 0

 

 
 

 

 
 ; e2( ) =

0 −1

1 0

 

 
 

 

 
 ; e12( ) =

1 0

0 −1

 

 
 

 

 
 (21)

In terms of matrices, the elements of the minimal left ideals become

(ΨL1) =
a 0

b 0

 

 
 

 

 
 and (ΨL 2) =

0 d

0 c

 

 
 

 

 
 (22)

The appearance of two minimal left ideals may at first sight seems surprising since in

physics there is only one column vector for spin3.  In section 8 we will show exactly how
these two spinors are merged into one.  At this stage we merely remark that the two
spinors are equivalent under the inner automorphsim defined by

                                                
3 It should be noted that minimal left ideals are not always represented as single column matrices.  For

example 2 ΨL1( ) = 1
2

a − b a − b

a + b a + b

 
 
 

 
 
 is a minimal left ideal.
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(e1 ) =
0 1

1 0

 

 
 

 

 
 

The corresponding elements of the minimal right ideals become

(ΨR1
) =

a* b*

0 0

 

 
  

 

 
  and (ΨR2

) =
0 0

d* c*

 

 
 

 

 
 (23)

Finally let us return to the definition of the state 1 and see how it fits in with the matrix

representation.  In this case the density operator takes the special form 1 shown above so

that

1 1+ e1 + e2 + e12( ) = Tr 1 1+ e1 + e2 + e12( )( ) = − (24)

whereas for 2 the density operator takes the form 2 so that

2 1+ e1 + e2 + e12( ) = Tr 2 1+ e1 + e2 + e12( )( ) = + (25)

Thus we find consistency since equations (24) and (25) are identical to equations (13) and
(17). This means that the state defined by 1 generates the left ideal generated by 2, and

vice versa.  The reason for this is as follows.  Since 1(B*K) = 0 for ∀ B ∈ A, we must

have  1(K*K)  = 0 for ∀ K ∈ L1. Since 1( 1* 1) ≠ 0, 1 ∉ L1.  Thus the left ideal

generated by i(B*K) = 0 is always the complement of the ideal generated by i.  We will

discuss this point again in section 8.1.

4.4 Mean Values.

As we have seen above we can write

A = 1 ΨR1AΨL1( )
Now if we write

A = a01+ a1e1 + a2e2 + a12e12

Then using the above expressions for L1 and R1 above we find

ΨR1 AΨL1( ) = a
2 + b

2( )a0 + a*b + b*a( )a1 + b*a − a*b( )a2 + a
2 − b

2( )a12[ ] 1
2 1+ e12( )
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while

A = 1 ΨR1AΨL1( ) = a
2 + b

2( )a0 + a*b + b*a( )a1 + b*a − a*b( )a2 + a
2 − b

2( )a12[ ] (26)

We can also write

A = 1 ΨR1AΨL1( ) = 1 AΨL1ΨR1( ) = 1 A 1( ) = Tr 1A( )

Indeed one can evaluate 1(A 1) and show it is equal to the result calculated in the last

equation.

5.  Mixed States and the GNS Construction.

In order to illustrate how to deal with mixed states for the algebra R1,1, we start with the
matrix representation defined in section 4.3 and choose the specific density matrix

( ) = 1 0

0 2

 

 
  

 

 
  

It can quickly be checked that  in fact corresponds to mixed state by showing 2 ≠ .
Remembering that  is equivalent to taking the trace, it is straight forward to show that

A( ) = a01+ a1e1 + a2e2 + a12e12( ) = 1 + 2( )a0 + 1 − 2( )a12 (27)

Let us now try to find the Gel'fand ideal using the technique outlined in section 4.1 and
4.2.  We start by writing this ideal in the general form

ΨL = z + z1e1 + z2e2 + z12e12

Then we need to solve the equation

a0 + a1e1 + a2e2 + a12e12( ) z + z1e1 + z2e2 + z12e12( )( ) = 0

with

a01( ) = a0 1 + 2( ); be1( ) = 0; ce2( ) = 0; de12( ) = d 1 − 2( )

We can then show that the equation we have to solve is
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a0 1 + 2( )z + 1 − 2( )z12[ ] + a1 1 + 2( )z1 + 1 − 2( )z2[ ] +

a2 1 + 2( )z2 + 1 − 2( )z1[ ] + a12 1 + 2( )z12 + 1 − 2( )z[ ] = 0
.

This equation has no non-trivial solution except for 1 = 1, 2 = 0; and 1  = 0, 2  = 1

which are the results we obtained in section 4.2.  Hence we cannot extend these methods
to general values of  and therefore we have to use an alternative method, which we will

discuss below.  However before going on to explore a more general method let us first
explore how the mixed state can be handles within R1,1.

In section 3.2 equation (9), we showed that the density matrix could be written in the
form

= i Bi i Bi
*

i=1

r

∑

which in this example can be written as

= 1 + 2 = ΨR1ΨL1 + ΨR2ΨL2

where

ΨL1 = 1
1
2 1 + e12( ) = i 11  with     ΨR1 = 1

1
2 1 + e12( ) = i 11

and

ΨL 2 = 2
1
2 1 − e12( ) = 2 22 with ΨR2 = 2

1
2 1 − e12( ) = 2 22

so that

= 1 + 2 = 1 11 + 2 22 (28)

Then

A = Tr A( ) = 1 1A( ) + 2 2 A( )
gives

A = 1 + 2( )a0 + 1 − 2( )a12 (29)
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This then agrees with the result calculated using the matrix representation above.   Thus

we see that we use both minimal ideals in constructing the density operator.  This result
has already been used for the Dirac Clifford algebra by Frescura and Hiley (1987)

5.1 GNS Construction.

As we indicated in section 3.2 we would like to construct a D so that we can write the

density operator as = DD*which in turn allows us to write

A = D*AD( ) = DD* A( ) = A( ) = Ψ A Ψ

so that D is the algebraic equivalent of  Ψ .  This would enables to find the algebraic

background to the GNS construction.

From equation (28) together with the fact that 11, 22 are the orthogonal primitive

idempotents satisfying ii jj = ij jj, we can immediately write

D = i
i =1

2

∑ ii (30)

so that

A = i
r −1

2

∑ ii A i
r −1

2

∑ ii

 

 
  

 

 
  = 1 + 2( )a0 + 1 − 2( )a12

which is the result produced in equation (29).  Thus we have obtained exactly the same

result as that obtained by matrix representation used in section 4.2.  It is now obvious
how to generalise this.  We simply write

D = i
i =1

r

∑ ii (31)

which immediately gives

A = D*AD( ) = A( ) ≡ Ψ A Ψ

5.2  The Matrix Representation



19

The GNS construction is usually presented as a matrix representation (See Emch 1972).

We can immediately construct a matrix representation if we first notice that any matrix
transformation of the form C D  can be written in the form C ⊗ D( ) ˆ  where ˆ  is the n ×
n density matrix written as a column with n2 entries.  But we are interested in forming

A = Tr A( ) = Tr DD*A( ) = Tr D*AD( ) = Tr D*( ) A ⊗ 1( ) D( )( ) (32)

where D( ) is a column with n2 entries.  This can be written as

D( ) = j
j =1

r

∑ ( ) jj = Bj( )
j =1

r

∑ (33)

In the matrix representation we can write

B j( ) =

0

.

0

j

0

.

0

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

That is where B j( ) is the 1 × n2 column matrix with j  appearing in the

s = [j(n + 1)+1] element.  Here j is the jth eigenvalue of the density matrix in the

representation used in section 5.  This enables us to introduce the column matrix D( )
with j js  in the sth element satisfying s = [j(n + 1)+1] as j runs from 1 to r. Then we

can write

A = A( ) = Tr A( ) = (D* )( (A) ⊗ (1)) (D)( ) (34)

5.3 Specific example

Let us illustrate the above discussion by returning to the example in section 5.1.  Here we
find that (D) becomes
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D( ) =

1

0

0

2

 

 

 
 
 
 
  

 

 

 
 
 
 
  

(35)

so that

A = Ψ ˆ A Ψ = 1 0 0 2( )
a0 + a12 a1 − a2

a1 + a2 a0 − a12

a0 + a12 a1 − a2

a1 + a2 a0 − a12

 

 

 
 
 
 
 

 

 

 
 
 
 
 

1

0

0

2

 

 

 
 
 
 
  

 

 

 
 
 
 
  

A = 1 + 2( )a0 + 1 − 2( )a12

which is identical to equation (27) showing that we can get exactly the same result as the

standard method using the density matrix.  The advantage of this method lies in the fact
that when generalised to a Hilbert space construction, which we will discuss later, we
have 'wave functions' depending upon temperature.  This leads us to a more generalised

quantum mechanics discussed by Umezawa (1993),

5.4  A more Physical Example.

To this point we have been considering mathematical structures per se.  Let us now turn
to see how these techniques in a physical problem.   Consider a thermal spin system in an

external magnetic field.  A typical density operator can be written in the form

=
exp[− H ]

Tr exp[− H]
 (36)

where  = 1/kT and H is the Hamiltonian H = −B 3.  Since we are using Pauli spin

matrices we must use the standard multiplication rules for Pauli spin matrices, i.e. the

quaternion Clifford algebra, H and not R1,1 as used above.  Using the standard
representation for the Pauli spin matrices

1 =
0 1

1 0

 

 
 

 

 
 

2 =
0 −i

i 0

 

 
 

 

 
 and 3 =

1 0

0 −1

 

 
 

 

 
 
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we find

=

1+ tanh
2

0

0
1 − tanh

2

 

 

 
 
  

 

 

 
 
  

(37)

then it is straightforward to show

a1+ b x + c y + d z( ) = a + d tanh (38)

Let us now try to find the Gel'fand ideal using the technique outlined above.  We start by
writing this ideal in the general form

ΨL = z + z1 1 + z2 2 + z3 3

Then we need to solve the equation

a + a1 1 + a2 2 + a3 3( ) z + z1 1 + z2 2 + z3 3( )( ) = 0

with

a1( ) = a; b 1( ) = 0; c 2( ) = 0; d 3( ) = d tanh

It is straightforward to show that the equation we eventually have to solve is

a − a3 tanh( )z + a1 + a2 tanh( )z1 + a2 − a1 tanh( )z2 + a tanh + a3( )z3 = 0 .

Once again this equation has no non-trivial solution so we cannot used the methods
outlined above in section 4 and we are forced to use the GNS construction. To do this we

need a pair of primitive idempotents from the algebra H.  These are

11 = 1
2 1+ 3( ) and 22 = 1

2 1− 3( ) (39)

so that

D = 1

2
1+ 3( ) + 2

2
1 − 3( ) (40)
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If we write A = a1 + b 1 + c 2 + d 3  then

A = A( ) = D* AD( ) = a + d tanh

which is the value found in equation (38).  In the matrix representation discussed in 5.2

we find

D( ) = Ψ =

1 + tanh
2
0

0
1 − tanh

2

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

with ( ) =
0

0

 

 
 

 

 
 (41)

Again it is straight forward to check that

( A( )) = Ψ A( ) Ψ = a + d tanh

6.  Umezawa's Approach.

In the above generalisation to mixed states we need to consider a product representation

A ⊗ 1. It is of interest to compare the above approach with that introduced by Umezawa

(1993).

Suppose we start with a general thermodynamic system with the partition function given
by

Z( ) = Tr exp[− H]( )

where  = 1/kT and H = H0 − N.  Here H0 is the particle Hamiltonian and  is the

chemical potential.  The ensemble average is given by

A =
Tr exp[− H]A( )

Z ( )

We want to find a state Ω( )  such that
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A =
Tr exp[− H]A( )

Z ( )
= Ω( ) (A) Ω( )

Suppose H n = En n , then

A = Z −1( ) n
n

∑ A n exp[− En] = Ω( ) (A) Ω( )

Can we find Ω( ) ?  To this effect let us write Ω( ) = n
n

∑ fn( )  so that

Ω( ) (A) Ω( ) = fm
*

n,m
∑ ( ) fn( ) m A n = Z −1 ( ) n

n
∑ A n exp[− En ]

which will be satisfied only if

fm
*( ) fn( ) = Z −1( )exp[ − En ] mn

However it is impossible to satisfy this relation if fn( ) are simply complex numbers.

Umezawa suggests we write

fn( ) = Z − 1
2( )exp[− En 2] n

Here n  is a copy of the original set of kets.  Then

fm
*( ) fn( ) = Z −1( )exp[ − En + Em( ) 2] mn

This means we can write

Ω( ) = Z −1
2 exp[− En 2 ] n

n
∑ ⊗ n . (42)

We can show this is exactly the same vector as is obtained from the GNS construction.
We will simply illustrate the similarity using the example of section 5.4.

It is straightforward to show that

Z
−1

2 exp[ E1 2] 1 ⊗ 1 =
1 + tanh

2
1 ⊗ 1

and
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Z
−1

2 exp[ E2 2] 2 ⊗ 2 =
1 − tanh

2
2 ⊗ 2

Since

1 ⊗ 1 →
1

0

 

 
 

 

 
 ⊗

1

0

 

 
 

 

 
 =

1

0

0

0

 

 

 
 
 
 
 

 

 

 
 
 
 
 

and

2 ⊗ 2 →
0

1

 

 
 

 

 
 ⊗

0

1

 

 
 

 

 
 =

0

0

0

1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

We find

 Ω( ) =

1 + tanh
2

0

0
1 − tanh

2

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

which is identical to equation (41), the result we obtained from the GNS construction.

What we see from this approach to the GNS construction is that we need to "double up"
the algebra since we need two copies of the vector space.  To put it more formally we
need to form the bialgebra  ⊗ .  Indeed this is exactly what Umezawa (1993)

proposed in his approach to thermal field theory.  Starting from the boson algebra
generated by the set {1, a, a†} where a is the boson destruction operator and a† the

corresponding creation operator, he introduced an additional pair of annihilation and
creation operators ˜ a  and ˜ a †which he attributes to a "ghost" field (Umezawa 1993a).  Of
course the idea of a ghost field is not very appealing from the physics point of view,

however this approach opens up the possibility of using this doubling to account for
quantum dissipation (Celeghini, Rasetti, and Vitiello 1992).  Hiley and Fernandes (1997),
following from Bohm and Hiley (1981), have shown this doubling of the number of

degrees of freedom is also required in going from two point functions in configuration
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space description to an algebraic phase space description.  This gives an alternative view

on dissipation. These ideas will be developed further in a forthcoming paper.

7.  Extension to the Heisenberg Algebra.

All of the previous examples have used the orthogonal Clifford algebra in some form or
other.  What we would like to do now is to show how the whole procedure can be

extended to the Heisenberg algebra.  As pointed out in a previous paper (Hiley 2001), the
main problem in following the above approach arises from the fact that the Heisenberg
algebra is a nilpotent algebra of degree three under the product [A, B].  As a consequence

of a well-known theorem, nilpotent algebras do not contain any non-trivial idempotents
so it is not possible to construct any non-trivial left ideals.

We want to approach Heisenberg algebra in two steps. Rather than go to the full algebra
immediately, we will start by considering the finite algebra introduced by Weyl (1930)
which contains the Heisenberg algebra in the continuum limit.  The Weyl algebra has an

extremely simple structure.  It is a finite polynomial algebra C2
n generated by the set of

elements {1, e1, e2} subject to

e1e2 =  e2e1 e1
n = 1, e2

n = 1, with  = exp[2 i/n] (43)

where n is an integer.  This algebra has a long history being first explored by Sylvester in
1884 as an example of a generalisation of the quaternions.  He called the elements
nonions for n = 3 and n-ions more generally.  What Weyl shows is that we can write e1 =
exp[i P] and e2 = exp[i X] where  = 2 / pn and  = 2 / xn so that we begin to see the

beginnings of the Heisenberg algebra. Indeed in the limit as n →  this algebra does

approaches the Heisenberg algebra with X and P representing the position and
momentum operators..

The importance of the algebra from our point of view is that it is not nilpotent.  In order
to find the idempotents using the method described in the section 4, equation (11) we

need to generate the sub-set satisfying

= K ∈ B*K( ) = 0,∀B ∈{ }
In order to see how this works in this example we again illustrate the procedure with an
example.
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7.1  The nonions.

We now take the simplest example of the structure described in the last sub-section,
namely, n = 3, the nonions, and write down the explicit multiplication table explicitly.

1 e1 e2 e11 e12 e22 e112 e122 e1122

e1 e11 e12 1 e112 e122 e2 e1122 e22

e2
2e12 e22 e112

2e122 1 e1122
2e1 e11

e11 1 e112 e1 e2 e1122 e12 e22 e122

e12
2e112 e122 e2

2e1122 e1 e22
2e11 1

e22 e122 1 2e1122 e1 e2
2e11 e12

2e112

e112
2e2 e1122 e12

2e22 e11 e122
21 e1

e122 e1122 e1
2e22 e11 e12

21 e112
2e2

e1122 e22 e11
2e122 1 e112

2e1 e2
2e12

with e1* = e11; e2* = e22; e12* = 2e1122; e112* = e112,

and (ei*)* = ei; * = −1.

We define the state by

1 a1( ) = a; 1 be2( ) = b; 1 ce22( ) = c; Rest = 0.

Now we need to solve the equation  1(B*K) = 0,  where

B∗ = 1 + e2
∗ + e22

∗ + e1
∗ + e12

∗ + e122
∗ + e11

∗ + ∆e112
∗ + Ωe1122

∗

= 1 + e22 + e2 + e11 + 2e1122 + e112 + e1 + ∆ e122 + Ω 2e12

and
K = z1+ z2e2 + z22e22 + z1e1 + z12e12 + z122e122 + z11e11 + z112e112 + z1122e1122 .

It is tedious but straight forward to show that the solution of the equation  1(B*K) = 0 is

+ +( ) z + z2 + z22( ) + + +( ) z1 + z12 + z122( ) + + ∆ + Ω( ) z11 + z112 + z1122( ) = 0

which gives solution (A) as

z = 1; z2 = ; z22 = 2
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z1 = 1;  z12 = ;  z122 = 2

z11 =1; z112 = ; z1122 = 2

so that the left ideal is

3ΨL1(A) = 1+ e2 + 2e22( )a + e1 + e12 + 2e122( )b + e11 + e112 + 2e1122( )c (44)

Solution (B) is

z = 1; z2 = 2; z22 = 

z1 = 1;  z12 = 2;  z122 = 

z11 =1; z112 = 2; z1122 = 

3ΨL1 B( ) = 1 + 2e2 + e22( )a + e1 + 2e12 + e122( )b + e11 + 2e112 + e1122( )c (45)

We see from these two solutions we have two idempotents

11 = 1
3 1 + e2 + 2e22( ) and 22 = 1

3 1 + 2e2 + e22( ).  We can find the third

from

1 = 00 + 11 + 22

So that 00 = 1
3 1 + e2 + e22( )  from which we can generate the third left ideal by

multiplying this idempotent from the left by each element of the algebra.  For

completeness we find this third ideal is explicitly

3ΨL1 C( ) = 1+ e2 + e22( )a + e1 + e12 + e122( )b + e11 + e112 + e1122( )c (46)

It is now straight forward to use these three left ideals to construct density operators and
mean values for both pure and mixed states as described in section 4 and 5.  It is also

possible to construct the GNS representation in a straight forward manner.  We will not
go into the details here.

7.2  Generalisation to arbitrary n.

The generalisation to arbitrary n is also very straight forward.  It is easy to obtain a

general expression for the family of idempotents defined in the previous section.  They
are
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ii =
1

n
− ji

j = 0

n−1

∑ e2( ) j
i, j = 0,1,......,n −1. (47)

Each one of these idempotents can be used to generate a set of n left ideals so that the
techniques discussed in section 4 and 5 can also easily be generalised to arbitrary n.

8.  Hilbert Space and the GNS Construction.

Now we want compare our approach with the approach through Hilbert space.  This

means showing how the minimal left ideals are related to vectors in a Hilbert space. In
order to begin we must first introduce the notion of -equivalence classes of elements of

the algebra, A.  To do this consider two elements A and B of A.  Whenever A − B ∈ ω,

we say A and B are -equivalent.   Since ω is a linear sub-space of A it is clearly an

equivalence relation.  For every A ∈ A we denote its equivalent class by Ω(A).

We now equip the set of equivalent classes with a vector space structure Iω by defining

Ω(A) + Ω(B) = Ω A + B( ) ∀ A, B ∈ A, λ, µ ∈ ℜ or C

We can equip Iω with a pre-Hilbert space structure by defining

Ω(A),Ω(B)( ) = Ω(A*A)

With this we can define a norm Ω(A)
2 = Ω(A*A).  If necessary we can use this norm to

complete Iω thus forming a Hilbert space.

8.1.  Examples.

To illustrate the implications of this structure we again examine the example R1,1 given
above.  We take the algebraic spinor defined above in equation (18), namely,

ΨL 2 =  a
2 (1 -  e12) + b

2 (e1 -  e2 ).

We then see clearly that 1 and e12 ∈ Ω(1), while e1 and e2 ∈ Ω(e1).  The Hilbert space is

thus two-dimensional so we can write

Hω = Ω(1) + Ω(e1) (48)
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Where Ω(1) and Ω(e1) are orthogonal, providing a basis for the two-dimensional Hilbert

space Hω.

Notice that when we pass to the equivalence class we lose some of the mathematical
structure in that both L1 and L2 form equivalent Hilbert spaces.  In standard quantum

mechanics it does not seem necessary to distinguish between these two spaces.

In the case of the nonions we can show that the three ideals L1, L2 and L3 belong to a
single equivalence class.  Thus with the obvious generalisation of equation (48) we can
construct a Hilbert space by writing

H ω1 = (1) + (e1) + (e11). (49)

This gives a three-dimensional Hilbert space as expected.  Notice that in this case we are
dealing with a pure state so that the GNS construction gives us an irreducible

representation.

We could generalise to the mixed state by choosing a different state ω'.  For example we

could start with the density matrix given in equation (36) but choosing for the

Hamiltonian H = −B e2( ).  The GNS construction will go through exactly as explained

in section 5.  As the example chosen is not motivated by any relevant physical system we
will not discuss it further here but leave it as an exercise for the interested reader.

It should also be stressed that these are not the only left ideals in the algebra.  Indeed
there are an infinite number of them obtained from inner automorphism.  Thus we can

always find another left ideal by first finding a new set of idempotents using

′ = S S−1 S ∈ A (50)

It might be of some interest to note that a sub-set of these S generate a set of discrete
Fourier transformations.

8.2  Hilbert Space continued.

We now define for all A ∈ A
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πω(A) : Hω → Hω,     so that πω(A)Ω(B) = Ω(AB). (51)

We must ensure that this definition implies that Ω(AB') is independent of B' in Ω(B) so

that it does not matter which Ω-equivalent element B is used to label the equivalence

class Ω(B). To this effect

Ω(AB) − Ω(A ′ B )
2 = Ω A B − ′ B ( )( ) 2

= Ω A B − ′ B ( )( )*
A B − ′ B ( )( )( )

      = Ω B − ′ B ( )*
A*A B − ′ B ( )( ) ≤ A

*
. Ω B − ′ B ( )2

= 0

This is zero because B−B' ∈ Lω.  Thus it does not matter which element in the

equivalence class is used to label the class.

Now we need to verify that ω(A) is, indeed, a representation.

A + B( )Ω(C) = Ω A + B( )C( ) = Ω(AC) + Ω(BC)

= A( ) + B( )( )Ω(C)

AB( )Ω(C) = Ω AB( )C( ) = Ω A BC( )( ) = (A) (B)Ω(C)

(A)* Ω(C),Ω(D)( ) = Ω(C), ( A)Ω(D)( ) = C*AD( )

= AC( )*
D( ) = Ω A*C( ),Ω(D)( ) = (A*)Ω(C),Ω(D)( )

Thus ω is a homorphism of the involutive algebra A to the set of operators acting on the

pre-Hilbert space Lω.  It is not difficult to show that, if necessary, we can extend ω(A) to

a bounded operator on Hω in a unique manner.  Furthermore since ω(A*) = ω(A)*, ω(A)

is self-adjoint for every A ∈ A.

8.3.  Return to the Example.

Returning to R1,1, in the orthogonal basis (1), (e1) we find

(1) =
1 0

0 1

 

 
 

 

 
 (e1 ) =

0 1

1 0

 

 
 

 

 
 
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(e2 ) =
0 −1

1 0

 

 
 

 

 
 (e12 ) =

1 0

0 −1

 

 
 

 

 
 

Thus we have produced an irreducible representation and we can write

1 + e1 + e2 + e12( ) =
+ −
+ −

 

 
  

 

 
  (52)

while

Ω(1) =
1

0

 

 
 

 

 
 and Ω(e1) =

0

1

 

 
 

 

 
 (53)

Thus in a pure state defined by 1(A) given above, we find that the representation for  is

the familiar real Pauli spinor.

In the case of the nonions equation (53) is generalised to

Ω 1( ) =
1

0

0

 

 

 
 
 

 

 

 
 
 

   Ω e1( ) =
0

1

0

 

 

 
 
 

 

 

 
 
 

and Ω e11( ) =
0

0

1

 

 

 
 
 

 

 

 
 
 

Giving us the basis for the three-dimension representation discussed in section 8.1. It is
not difficult to show that the corresponding matrix representation can be written as

1
e1( ) =

0 1 0

0 0 1

1 0 0

 

 

 
 
 

 

 

 
 
 

;
1

e2( ) =
1 0 0

0 0

0 0 2

 

 

 
 
 

 

 

 
 
 

and 
1

e12( ) =
0 0

0 0 2

1 0 0

 

 

 
 
 

 

 

 
 
 

The rest of the matrixes can be found using the multiplication table above.

Notice also that this approach enables us to attribute to each A ∈ A, a vector

Ω(A) = (A)Ω(1) .
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When generalising to include an infinite algebra we require the representation space Hω to

be defined in terms of a strong closure of these vectors.   This means that (1) is cyclic

for ω.  A vector is cyclic relative to the algebra if the set {πω(A) | A ∈ A} is dense in

Hω.  This means that for any vector  ∈ Hω  − (A)  can be made as small as desired.

In conclusion then our construction associates to every state  on A a cyclic

representation ω of A.  We can then write the expectation value as

(A) = Ω (A) Ω

where we have written Ω(1) = Ω .

8.4  The Limit n 

The simplest way to proceed to generalise the n-ions is to go to the limit n → ∞. This

limit has already been discussed by Hiley and Monk (1993) and Hiley (2001), their

argument being based on earlier work by Weyl (1931).  We will briefly outline the
argument again here for the sake of completeness.

We have written e1 = exp[i P] and e2 = exp[i X] where  = 2 / pn and  = 2 / xn so

that we can regard e1 as a translation in space and e2 as a translation in momentum space.
Thus we can regard  (e1)

−s as translating from xk → xk−s.  In the limit this corresponds to

the transformation (x) → (x−s).  Similarly (e2)
t takes xk → ktxk, which in the limit

corresponds to (x) → exp[itx]. (x).  This shows how the Schrödinger representation

emerges from the discrete Weyl algebra.  In this case the discrete Fourier transformation
mentioned above in section 7.1 becomes the usual Fourier transformation that takes the x-
representation to the p-representation.

If we now examine the limiting process on the primitive idempotent 00 we find

00 n( ) =
1

n
exp i X[ ]∑ →

1

2
d exp i X[ ]∫ → (x) (53)

Thus we see that in the limit the Weyl idempotent 0(n) plays the role of the Dirac delta

function in the continuum algebra. If we start directly from the Heisenberg algebra
defined through the standard commutation relations [X, P] = i, we miss the idempotent,



33

the Dirac delta function which we must add later when we have constructed the Hilbert

space.

If we remain in the algebraic structure then we can formally write 00(n) = ∆ then we find

the relations

X  = 0, P = 0, and ∆2 = ∆
(54)

If we identify E = ∆† introduced by Frescura and Hiley (1984) then the following relation

result:

EX = 0, PE = 0, and E2 = E
(56)

The set {1, X, P, E} then generates what we have called the extended Heisenberg algebra.
Further details of this structure can be found in Hiley (2001).

9. Conclusions.

We have shown how an approach to quantum mechanics can be built from the algebraic

structure of the Clifford algebra and the discrete Weyl algebra (or the generalised
Clifford algebra).  These algebras can be treated by the same techniques that do not
require Hilbert space yet enable us to calculating mean values required in quantum

mechanics.  In the appendix we compare the two approaches in table form. We have also
shown how these techniques are related to the Hilbert space, which effectively requires
additional structure that involves the space-time continuum.  Yet these algebras already

contain geometric feature not only of space-time itself, but of a generalised phase space
as already pointed out in Bohm and Hiley (1981 and 1983).  The full implications of this
geometric structure will be discussed in another publication.

10. Appendix.

In this appendix we list the correspondence between the algebraic approach to quantum
mechanics which we call "The Algebra of Process" and the usual approach which we call

"The Algebra of Observables".  We also include the extra step which involves a

projection of the ket vector space into L2(x).
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Algebra of Process. Algebra of Observables.

*Algebra † Algebra 

Left ideal,  L ∈ L External vector space,   〉 ∈ V

        ⇒ 〈 x  〉 = (x)

Generated by idempotents   j,

j
2 = j → A j.

Basis of ideal ij with j → jj Basis i 〉
[1 ≥ i ≥ n, AND 1 ≥ j ≥ n] [1 ≥ i ≥ n]

Right ideal,  R ∈ R Dual vector space, 〈  ∈ V*

 ⇒ 〈 x 〉 = ∗(x)

Generated by idempotents   j

j
2 = j → jA.

[*: L → R,  i
* = i ] [ † :  〉 → 〈  ]

Inner product. ω(RL) = 〈RL〉 Inner product 〈  〉
     ⇒ * x( )∫ x( )d3x

 : ij → ij,  ∀ ij,

[Trace : coeff of r-1 of characteristic poly.]

(L*L) = ( iA i) = ( A i) = A ∈ R

Outer product, L.R → B iiC Outer product,  〉〈 
L.L* → B iiB* ↓

Projection operator Pi = i 〉〈i

Completeness relation. Completeness relation.

1 = ii
i

∑ 1 = i
i

∑ i

         ⇒ i ′ x 
i

∑ x i = ′ x − x( )
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Density operator, = B iiB
i

∑ *
Density operator, ,

= ii
i

∑ ii + ij
i, j i< j( )
∑ ij + ji( )          = ii

i
∑ i i + ij

i, j i < j( )
∑ i j + j i( )

[ρ =ρ†,  Tr(ρ) = 1, ρ+ve and linear]

For diagonal For diagonal 

= i
i

∑ ii = i
i

∑ i i

    ′ x , x( ) = i
i

∑ * ′ x ( ) x( )

Expectation values. Expectation values.

A = A( ) = ii B
*AB ii

i
∑

 

 
  

 

 
            A = Tr A( ) = r

i
∑

r
∑ iA i i r = r

r
∑ A r

         ⇒ A = i
i

∑ i
* x( ) i∫ x( )d3x

GNS construction GNS construction

 = D*D = D*1D, i.e. ∃ D = i
i

∑ ii ∃ Ω 〉 a cyclic vector

A = D*AD( ) A = Ω A( ) Ω
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