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Original paper abstract: 

 

Developmental disorders show wide variations in severity even when, on genetic 

grounds, it is known that there is a common underlying cause. We used 

connectionist models of development combined with population modelling 

techniques to explore possible mechanistic causes of variations in disorder 

severity. Specifically, we investigated the plausibility of the hypothesis that 

disorder variability stems from the interaction of the common cause of the 

disorder with variations in neurocomputational parameters also present in the 

wider typically developing population. We base our simulations on a model of 

developmental regression in autism, which proposes that this phenomenon arises 

from over-aggressive synaptic pruning (Thomas, Knowland & Karmiloff-Smith, 

2011). We simulated a population of 1000 networks in which 641 exhibited the 

behavioural marker of regression in their developmental trajectories when 

learning a notional cognitive domain. Aside from the known single cause of the 

disorder (an atypical connectivity pruning parameter), we then analysed which 

neurocomputational parameters contributed to variation observed in a number of 

characteristics of developmental regression. These included the timing of 

regression onset, its severity, its behavioural specificity, and the speed and 

extent of subsequent recovery. Results are related to existing causal frameworks 

to explain the origins of developmental deficits. 

 

Additional material: 

 

The additional figures included in the current document depict the variability 

observed in characteristics of the simulated developmental regression, included 

the timing of its onset (Figure A), the time period over which regression took 

place indexing the rate of decline (Figure B), the rate of subsequent recovery 

split by the severity of initial regression (Figure C), and in the final level of 

performance either in absolute terms or relative to the level of performance 

achieved prior to the onset of regression (Figure D). 

 

The subsidiary analyses exploit the fact that simulated individuals had sibling 

relationships. Artificial genomes were used to encode each individual’s 

inherited neurocomputational parameter set. Siblings shared 50% similarity in 

their genomes, and therefore had (probabilitistically) similar parameter sets. 

Where an individual demonstrating regression had an unaffected sibling, it was 

then possible to explore whether the learning ability of the unaffected sibling 

accounted for any variability in the severity of the regression found in the 



affected individual. The subsidiary analyses addressed two questions: (1) Does 

unaffected sibling ability explain differences in the severity of the disorder in the 

affected individual? (2) Does unaffected sibling ability serve as a protective 

factor in whether the cause of the disorder (a high setting of the pruning 

threshold parameter) actually led to manifestation of the disorder? 

 

The results were as follows: (1) Unaffected sibling ability was defined as the 

sibling’s rank order in the unaffected population on one of the harder mapping 

sets at an early point in training (50 epochs). This measure served to 

discriminate learning ability across individuals. Sibling rank order was a weak 

predictor of disorder severity, accounting for 8% of the variance. The 

simulations suggest some degree of the severity of an individual’s disorder can 

be explained by their unaffected sibling’s cognitive ability. (2) Unaffected 

sibling rank order did not serve to modulate the relationship between the 

parameter causing regression and whether an individual actually exhibited 

regression. However, for unaffected individuals only, there was a reliable 

relationship between the value of this parameter and their unaffected sibling’s 

ability. Somewhat surprisingly, a lower ranking in the unaffected sibling 

correlated with a value of the parameter that placed the individual more at risk of 

regression. Our interpretation was that in these simulations, a genetic family 

background conferring LOW learning ability was a protective factor again 

regression. Should regression index a mechanism responsible for the wider 

autistic phenotype, the sibling results suggest that autism would be associated 

with high intelligence families rather than low intelligence families. 

 



Additional Plots 

 

Additional plots for Sections 3.2-3.5 

 

 

Section 3.2 

Figure A. Distribution of onsets of developmental regression (the ‘life’ of each individual 

network was 1000 epochs of training). For each box, the central line represents the 

median value of the group; the box captures the middle 50% of the cases; the whiskers 

connect the largest and smallest values that are not categorized as outliers or extreme 

values; ‘o’ represents an outlier more than 1.5 box-lengths away from the box; ‘*’ 

represents an extreme value more than 3 box-lengths away from the box. 

 

 

 

 

 

 

 

 

 

 

 



Section 3.3 

Figure B. Variation of the number of epochs over which the regressive decline in 

performance took place, split by severity and shown for each pattern type. 
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Section 3.4 

Figure C. Variation in the rate of recovery from regression, split by severity and shown 

for each pattern type. Recovery was categorised at five levels: 0 = no recovery, 1 = slow 

recovery, 2 = medium recovery, 3 = fast recovery, 4 = very fast recovery. 
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Section 3.5 

Figure D. Variation in the recovery levels following regression. (a) Absolute final level 

of performance; (b) Level of final performance relative to the pre-regression peak (0 = 

return to the peak level; negative values = permanent deficit; positive values = later 

development above peak value). 
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Subsidiary analyses 

 

Additional analysis evaluating whether differences in disorder symptom severity can be 

predicted from the ability of unaffected siblings. 

 

If a sibling is more able, might this family background convey resilience to individuals 

affected by the disorder? An artificial genome was used to encode each individual’s 

neurocomputational parameter set. This allowed for the simulation of genetically similar 

individuals such as siblings. We used this manipulation to explore whether the ‘ability 

level’ of unaffected siblings of networks showing regression could be used to predict the 

level of severity of regression in the affected individual. If a sibling is more able, might 

this family background convey resilience to individuals affected by the disorder, so that 

the disorder was milder? This might point to a method to assess the contribution of 

normal individual differences (i.e., background genetic variability) to disorder severity. 

 

Additional Methods 

 

In order to allow siblings to be simulated, parameter values were encoded in an artificial 

genome. Siblings were defined by their genetic similarity. Each parameter was encoded 

in a set of binary genes, with the number of 1-valued alleles from the set determining the 

parameter value via a look-up table. For example, hidden unit number was coded over ten 

binary genes. If an individual had a genotype of 0110101100, a total of five 1s 

corresponded to a hidden layer with 60 units. A look-up table was created for each 

parameter (available in Thomas, Ronald & Forrester, 2011). Sibling pairs then constituted 

genomes that shared 50% of their genes, constraining the neurocomputational parameters 

to be similar. 

 

The full population was generated in the following manner. Five hundred genotypes were 

generated at random. From these, five hundred further sibling pairs were generated. The 

look-up tables were used to produce the parameter set for each individual. A family 

quotient value was generated in the appropriate range for that population and the quotient 

was then used to create each individual’s bespoke family training set. Siblings were 

exposed to the same training set. Each network was initiated with random weight values 

(in the range determined by the individual’s weight range parameter), and then trained for 

1000 epochs, where one epoch was an exposure to all the patterns in the training set, 

presented in random order. Performance was measured on the five pattern types (Easy, 

Generalisation, Hard, Harder, Hardest-practised) according to the full training set and 

the generalisation set. 

 

Variations in the learning environment were implemented via the family quotient 

parameter, a value created for each family that was used to produce a probabilistically 

sampled subset of the full training set (e.g., a family quotient value of 0.8 would be used 

to select 80% of the full training set). Family quotients were sampled in the range of 0.6 

to 1.0. Siblings were assumed to be raised in the same family and were assigned the same 

training set. 

 



 

Results 

 

Unaffected siblings as predictors of disorder symptom severity 

 

We took a point in early development (50 epochs) and one of the more discriminating 

behaviours (the Harder patterns) and gave the typically developing networks a rank order 

in the population. This gave a proxy of the unaffected siblings ‘cognitive ability’. We 

then identified sibling pairs for whom one individual showed regression (of any level in 

any behaviour), while the other showed no regression of any severity in any behaviour. 

The possible reasons why a sibling could be unaffected were that background protective 

factors had conspired to save the sibling despite a high pruning threshold, or that the 

pruning threshold was not as high in the sibling, or a combination of both. 

 

We then tested whether the rank order of the unaffected sibling in the population (their 

ability level) predicted the severity of the regression in the affected sibling. We excluded 

the more potentially ambiguous condition of mild regression. For severity levels 2, 3, and 

4, the numbers of affected siblings at each severity level were unequal, compromising the 

analysis (N=5, 12, and 52, respectively). A statistical linear regression analysis was used 

to predict severity from rank order. One of the 69 data points had a Cook’s distance of .4, 

while the other 68 had values below .1, suggesting that this data point was an outlier. 

Removing the outlier, population rank order predicted 8.1% of the variability in severity 

of regression (F(1,67)=5.92, p=.018). This is either an encouraging or discouraging 

result. Encouragingly, unaffected sibling ability, as a measure of background genetic 

individual variation, reliably predicted variability in disorder severity. However, over 

90% of the variance was left unexplained. 

 

Figure E: The population rank at 50 epochs on the Harder patterns for 

unaffected ‘siblings’ of networks showing regression, split by level of 

severity of regression in the affected sibling. 

  

 

 

 

 

 

 

 



 

Unaffected sibling ability as a direct modulator of regression risk 

 

We next asked whether unaffected sibling ability modulated the risk of the process 

causing regression actually leading to a manifestation of the disorder. We know that the 

cause of regression in affected networks was an atypical setting of the pruning threshold 

parameter. If the value is high enough, connections in functionally established circuits 

become liable to pruning, rather than unused resources. In previous analyses, we found 

that the value of the pruning threshold parameter explained around 60% of the risk in the 

manifestation of regression. We therefore evaluated whether unaffected sibling ability 

modulated the relationship between the value of the pruning threshold parameter and 

whether an individual exhibited regression (in any of the five target behaviours, at any 

level of severity). 

 

For cases where one sibling demonstrated regression but the other was unaffected, a 

linear regression model was used to predict regression status (yes or no) using the 

predictor of pruning threshold, the predictor of unaffected sibling ability, and an 

interaction term of threshold*sibling ability. The results indicated that as expected, 

pruning threshold was a reliable predictor of regression (F(1, 193)=82.98, p<.001, partial-

eta squared=.301). However, neither sibling ability (F(1, 193)=.09, p=.763, partial-eta 

squared=.000) nor the interaction term explained a significant amount of regression risk 

(F(1, 193)=.27, p=.604, partial-eta squared=.001). Unaffected sibling ability did not, 

therefore, modulate the relationship between the parameter causing regression and the 

risk of regression occurring. 

 

Sibling ability as a protective factor operating in unaffected individuals 

 

Lastly, we considered whether family background might be serving as a protective factor: 

perhaps our analysis was failing to consider those individuals who were at risk of 

experiencing regression, but did not because their family background protected them 

from it. (In affected individuals, the protective factors were not sufficient). 

 

We considered the correlation between unaffected sibling ability and the pruning 

threshold just in those simulated individuals who developed normally. Our initial 

expectation was that if family genetic background, as measured via unaffected sibling 

ability, protected individuals again regression, then we might find higher values of the 

pruning threshold for those with more able siblings. (Without a good family genetic 

background, regression would have occurred, and the individual would not be present in 

this unaffected group). We predicted a negative correlation between sibling rank and 

pruning threshold in the unaffected group (where low rank = good performance and high 

pruning threshold = risk for regression). 

 

There was indeed a reliable relationship between unaffected sibling ability and pruning 

threshold in typically developing individuals, explaining 3% of the variance (N=197, 

R
2
=.030, F(1,195)=6.07, p=.015). However, surprisingly, this was a positive correlation 



(of .174). That is, higher values of the pruning threshold parameter were present in 

typically developing individuals with poorer performing siblings. No such relationship 

between pruning threshold and unaffected sibling ability was found in those individuals 

who did display regression (N=303, p>.4). Since siblings shared the family environment, 

it is possible that the family protective factor was carried by the family environment 

rather than the genetic background. While it was indeed that case that the quality of the 

environment explained some of the unaffected sibling’s ability (the Pearson correlation 

between family quotient and sibling rank was .205, p=.004), nevertheless the quality of 

the environment did not correlate with the pruning threshold parameter in the unaffected 

individuals (Pearson correlation = -.122, p=.088) and therefore could not explain the 

predictive power of sibling ability. 

 

Discussion 

 

(1) We demonstrated that if background variability in the neurocomputational properties 

of a learning system is determined by genotype, then the abilities of unaffected siblings 

could explain some degree of the variation in the severity of the regression found in the 

affected sibling, although over 90% of the variance was unexplained by this method. 

 

(2) We found that unaffected sibling ability did not directly modulate the relationship 

between the causal process responsible for producing regression in the population 

(aggressive connectivity pruning) and the actual incidence of regression. 

 

(3) However, we did find that in those unaffected by regression, sibling ability was 

associated with higher values of the relevant pruning parameter, as if ability were 

successfully serving as a protective factor against regression. Against initial expectations, 

the relationship was such that a genetic family background conveying low ability was 

associated with values of the pruning parameter conveying greater risk of regression. 

 

There are two interpretations of this unexpected result. Either: a high pruning threshold 

simply slowed learning; unaffected siblings were both at risk of having higher pruning 

thresholds; hence one sibling’s high threshold was associated with the other’s slow 

learning / low ability. If this were correct, it is puzzling that the relationship was only 

found in unaffected individuals, not in affected individuals as well. Under this view, 

affected individuals should only differ because their pruning threshold happened to lead 

to regression as well; why should their sibling with a (genetically similar) threshold also 

not then show slow learning. 

 

The alternative interpretation is that low ability conveyed a protection against regression, 

so that higher pruning threshold values were possible in the unaffected group when other 

inherited parameters produced low ability (using the sibling’s ability as an index of that 

ability). In these individuals, protection outweighed risk. This second interpretation is 

feasible because slow learning networks are often low capacity networks. Such networks 

must develop larger weights to learn the domain to which they are exposed. This is 

because the fewer connections must become proportionally larger to deliver the 



equivalent input-output mappings. Large connection weights confer protection against a 

pruning process that removes small weights. 

 

If this second interpretation is correct and, as we have argued, regression actually indexes 

a mechanism responsible for the wider autistic phenotype, then the sibling simulations 

make the following broader prediction: autism should be associated with high 

intelligence families rather than low intelligence families. 

 

More broadly still, if it were correct that high intelligence is a risk factor for autism, this 

would offer an insight into why autism is non-adaptive but nevertheless heritable. One 

answer to the paradox of how common, harmful, mental disorders can nevertheless be 

heritable is that of balancing selection, whereby susceptibility alleles sometimes increase 

fitness (Keller & Miller, 2006). Assuming high intelligence is adaptive, the autism 

genotype would then persist in the human population for two reasons: (1) its primary 

cause is an accumulation of common genetic variants that modulate the severity of 

synaptic pruning; where polygenic processes convey negative consequences, the risk 

genes are hard to remove from the population because individually they convey very little 

risk; (2) high intelligence, which is itself adaptive, is a risk factor for autism. Acting 

together, autism would be hard to select out of the human population across evolution 

because its causes are hard to isolate and its risk factors are themselves adaptive. 
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