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Abstract 

We compare three types of dual-route associative 
architectures for learning the English past tense problem. 
Identical computational resources are used in (1) a pre-
specified modular architecture, with a rule mechanism and an 
exception mechanism; (2) an architecture with two 
mechanisms which demonstrates emergent specialization of 
function for regular and exception verbs; and (3) a system 
with redundant use of its two mechanisms. The pre-specified 
modular solution was the least efficient for learning the past 
tense. This was due to difficulties in resolving the competition 
when its two modules attempted to drive the same output in 
different ways. The results are discussed in the context of 
modularity theory. 

Introduction 
The notion of modularity figures early in the history of 
cognitive science as a design principle for building complex 
computational systems. Thus Marr (1982, p.325) argued that 
‘any large computation should be split up into a collection 
of small, nearly independent, specialized sub-processes’. 
Fodor (1983) further developed the principle in the context 
of cognition, suggesting that modularity is likely to hold 
sway for low-level sensory and motor systems. For Fodor, 
modularity represented a probable coalition of processing 
properties (domain-specificity, informational encapsulation, 
innate specification, fast operation, hardwired at a neural 
level, autonomous, not assembled). Modularity saves a low-
level system from having to consult all an organism’s 
knowledge in order to do its job, instead acting over a 
restricted propriety knowledge base and potentially 
employing specialized processes (see Fodor, 2000, for the 
distinction between epistemological and psychological 
modularity). From a developmental perspective, a restricted 
domain of operation also simplifies the learning problem 
faced by the given sub-system. 

Fodor (1983) additionally argued that modularity would 
not apply to the central cognitive system, where access to 
background knowledge is available and computations are 
subject to global constraints of context. Later he argued that 
the central system might include the majority of cognition, 
so that modules would have limited explanatory scope 
(Fodor, 2000). However, others extended the principle of 
modularity to high-level cognition, under what Fodor refers 
to as the massive modularity thesis (2000). This move was 
driven both by (1) proposals from evolutionary psychology 

that humans might inherit domain-specific reasoning 
systems (e.g., for detecting social cheats, for predicting 
other people’s belief states), and (2) evidence from 
cognitive neuropsychology of double dissociations between 
high-level abilities in acquired brain damage. Debates 
continue about the necessary and sufficient features that 
define a module (e.g., for Coltheart, 1999, the main feature 
is domain specificity; Fodor, 2000, prefers encapsulation). 

The aim of this article is to consider the computational 
advantages and disadvantages in opting for modular 
architectures in systems required to learn different sorts of 
cognitive problem. While accepting there are innate 
constraints on the architecture of the cognitive system, our 
perspective is essentially developmental. By way of 
illustration, Calabretta et al. (2003) argued that the genotype 
of behaviorally complex organisms might be more likely to 
encode modular neural architectures because this avoids 
possible neural interference. They presented simulations in 
which a connectionist network was presented with letters on 
an input retina, and was required either to output Where on 
the retina a letter appeared or What letter it was. Table 1 
shows different three-layer architectures for systems with 
common or shared inputs, outputs, and processing 
resources. Calabretta et al. compared a system with common 
processing resources (Table 1, panel 5) with a system 
incorporating modular structure (panel 7). The modular 
architecture was found to be consistently superior in 
learning the task. This result arose because information 
required to compute Where is different from that required to 
compute What. There is no advantage in sharing 
information in a common representational layer. The 
modular architecture prevents the What channel from having 
to consider irrelevant information from the Where channel 
and vice versa, thereby aiding the learning process. 
 
Table 1:  Architectures with different modular commitments 
 

  OUTPUT 
  Common Separate 
  PROCESSING RESOURCES 
  Common Separate Common Separate 
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In this article, we evaluate the utility of modularity in 
another domain, English past tense. The domain is of 
interest because it has a dual structure requiring a child to 
learn (1) a general regularity, that the past tense of most 
verbs is formed by adding ‘-ed’ to the stem (e.g., 
talk=>talked), a regularity that is productive for novel verbs 
(wug=>wugged); and learn (2) a restricted set of exceptions 
to the rule, of various sorts (e.g., hit=>hit, sing=>sang, 
go=>went). 

Pinker (1991) proposed that children learn this domain 
using a modular architecture which comprises a 
‘computational component containing specific kinds of rules 
and representations’ and an ‘associative memory system 
with certain properties of connectionist models’ (1999, 
p.531), which learn the past tense rule and the exceptions, 
respectively. The rule-component operates as the default, 
while for exceptions, the memory component blocks the 
rule mechanism and delivers the exception form. Key 
empirical data indicate that children pass through an 
extended phase of ‘over-regularization’ where the rule is 
mistakenly applied to exception verbs (e.g., 
think=>thinked), suggestive of interference between two 
mechanisms. A debate continues on the status of this theory 
(see Thomas & Karmiloff-Smith, 2003, for a review). 

Our interest here is not to enter into this debate per se, but 
to use computational simulations to explore whether (and 
how) modular solutions offer an advantage for acquiring the 
past tense domain. We will begin with two assumptions. 
Assumption 1: the problem can be defined as one of 
learning the mapping between phonological representations 
of the verb stem and past tense form (this assumption could 
be wrong; see Thomas & Karmiloff-Smith, 2003). 
Assumption 2: the developmental system has two learning 
mechanisms available to it, one with computational 
properties better suited to learning regular mappings and 
one able to learn potentially arbitrary exceptions to the rule. 
Our architecture corresponds to Table 1, panel 3. Given our 
two mechanisms, it is important to realize that there are at 
least three ways to combine them that make different 
modular commitments. Diverse computational components 
do not themselves define a modular architecture. 

To determine the architecture, one must answer three 
questions. First, do input patterns get separately channeled 
(by some gatekeeper knowing about regulars and 
exceptions) to the different mechanisms? Second, do the 
mechanisms compete to drive the output, or can they 
collaborate in producing a response? Third, are the two 
mechanisms given equal opportunity to learn the problem, 
or does the improving performance of one mitigate the need 
for the other to improve its accuracy? We refer to these 
three dimensions, illustrated in Figure 1, as Input 
competition, Output competition, and Update competition, 
respectively (Thomas & Richardson, 2006). Depending on 
these three choices, the same processing resources can be 
used to create a pre-specified modular system (inputs 
channeled, components compete to drive output); a system 
demonstrating emergent specialization of function of its 

components (components learn the parts of the task for 
which their computational properties are fitted via update 
competition alone); or a redundant system (both 
components attempt to learn all the task and compete to 
drive output). Thomas and Richardson  (2006) demonstrated 
that both modular and emergent solutions exhibited double 
dissociations between regular and exception verbs in the 
endstate, although dissociations were stronger in the 
modular case; the redundant system only showed single 
dissociations. 

 
 

 
 
Decisions about modularity are not, therefore, simply about 
combining components with different domain-specific 
computational properties – in this example, the same 
components and properties deliver different modular 
solutions.  Restricted information flow is as important, and 
indeed may deliver pre-specified modularity on its own if 
the components share common processing properties. 

So our research question becomes, of the three ways of 
using the same resources, is the modular one the best? In 
our investigations, both our learning mechanisms were 
associative; respectively, a two-layer and a three-layer 
connectionist network. The two-layer network is better for 
learning regular mappings (faster, better generalization), 
while the three-layer network is better able to learn 
potentially arbitrary associations. 

Pinker’s dual mechanism model 
We should make clear our simulations neither sought to 
implement nor to test Pinker’s (1991) dual mechanism 
model of past tense acquisition. Explicitly, although we 
explored a modular architecture with a rule-learning 
component and an exception learning component, the rule-
learning component we used is not that intended in Pinker’s 
theory, since the latter mechanism remains insufficiently 
specified to allow implementation. The aim of the current 
simulations was to begin to address the issues that Pinker’s 
theory raises with regard to modularity by using a readily 
available associative network optimized to learn regular 
mappings as a proxy for a proper rule-learning mechanism. 
A few comments about Pinker’s theory will make this point 
clearer. 
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Figure 1:  Use of (I)nput, (U)pdate and (O)utput 
competition to create a modular, emergent, or redundant 
system using the same two components 



The blocking principle: In Pinker’s theory, the exception 
mechanism blocks the operation of the rule when an 
exception past tense form is retrieved from memory for a 
given verb stem (see Marcus et al., 1992, p.8-18, for 
details). Retrieval failures explain the occasional 
interference errors between the mechanisms. These ‘over-
regularization errors’ (e.g., thinked) occur predominantly 
(but not exclusively) in childhood. Marcus et al. (1992) are 
clear that the idea of blocking is not based on developmental 
evidence but derived from adult linguistic theory and simply 
attributed to the child (p. 16). It has not been implemented. 
The rule-learning mechanism: Marcus (2001) points out 
that the intended rule is a symbolic operation specified over 
the variable verb stem. The acquisition of this rule has not 
been clearly explicated, but appears to invoke both 
inductive and deductive inferential processes. For example, 
Marcus et al. (1992) list possible cues that the children 
might look for to recover the rule (e.g., the heterogeneity of 
stems that are heard to be regularly inflected, p.134). The 
inflectional system seeks a single rule, or possibly multiple 
rules (p.133). Pinker (1999, p.194) describes the child’s 
discovery of the rule as a sort of ‘epiphany’. Currently 
available rule-induction algorithms do not seem appropriate 
to capture the intended process. The rule-learning algorithm 
must explain the observed gradual improvement in regular 
past tense formation and also the strong generalization of 
the ‘+ed’ regularity to novel stems that bear little similarity 
to those that children know (e.g., ploamph=>ploamphed; 
Pinker, 1991; see Marcus, 2001, for discussion). Operation 
of the rule-learning device awaits further specification. 
The Revised Dual Mechanism (DM) model: In 1999, 
Pinker revised his model to weaken its modular 
commitments. In the new model, the rule mechanism 
attempts to derive the past tense rule, while the lexical 
memory attempts to learn (potentially) all the past tenses. 
These might include regulars that are high frequency or 
sound similar to distracting exceptions (e.g., 
blinked=>blinked, think=>thought). Here one mechanism 
has a restricted remit (regulars) while the other has a full 
remit (all verbs), creating a partially redundant architecture. 
Some have argued that this redundancy accounts for 
residual past tense acquisition in children with Specific 
Language Impairment (see Thomas, 2005, for discussion). 

Simulations 
The simulation section will proceed as follows. We first 
briefly introduce details of the architectures, training set, 
and parameters. We then compare developmental 
trajectories for our modular, emergent, and redundant 
systems on the past tense problem, considering both 
performance on the training set, interference errors, and 
generalization to novel verb stems. Where the exception 
mechanism was required to learn the full training set, its 
level of resources turned out to be crucial, and so results are 
presented for exception mechanisms with low and high 
resources. Among the high resource conditions, we consider 
a partially redundant architecture similar to the Revised DM 

model. Lastly, we will find that the three varieties of 
modular system (low resource, high resource, and Revised 
DM) present difficulties in coordinating the output of their 
two mechanisms, and so we consider adjustments to these 
models to optimize their performance. 

Simulation details 
Architecture: The network had 90 input units and 100 
output units. The ‘rule’ mechanism comprised a 2-layer 
network directly connecting input and output units. The 
‘exception’ mechanism comprised a 3-layer network, with a 
layer of hidden units interceding between the input and 
output layers. Twenty hidden units were used in the low 
resource condition and 100 in the high resource condition.  
Training set: The training set was based on the simplified 
rendition of the past tense problem used by Plunkett and 
Marchman (1991). Verb stems were triphonemic consonant-
vowel strings encoded using binary phonetic features. Thirty 
units encoded each phoneme and the outputs layer included 
an additional 10-unit inflection morpheme. There were 410 
regular verbs, 20 no-change exceptions, 68 vowel-change 
exceptions, and 10 arbitrary exceptions. Hereafter, the 
exceptions are labeled EP1, EP2, and EP3f, respectively. 
Training items were split into high and low frequency 
groups. To ensure the acquisition of arbitrary exceptions, 
these were given a higher token frequency than all other 
patterns, marked by the ‘f’. 
Generalization set: Novel stems could either share two 
phonemes with existing verbs (rhymes) or only one 
phoneme (non-rhymes). There were 410 regular rhymes, 10 
EP1 rhymes, 76 EP2 rhymes, 10 EP3f rhymes, and 56 non-
rhymes. We report extension of the rule to regular rhymes, 
referred to as rule(sim); extension of the rule to non-rhymes 
bearing low similarity to any stem in the training set, 
referred to as rule(nosim); extension of the rule to EP2 
rhymes (e.g., ling=>linged); and irregularization of EP2 
rhymes (e.g., ling=>lang). 
Competition mechanisms: Input competition was 
implemented by training the 2-layer network and the 3-layer 
network separately on regulars and exceptions respectively. 
It therefore assumes a type of input gatekeeper (see Fodor, 
2000, p.71-78, for discussion). For Update competition, 
each mechanism was backpropagated with error signals 
from the output generated by both mechanisms combined; 
for no Update competition, each mechanism received error 
signals from its own output response alone. To capture 
Output competition, the output of each mechanism was 
assigned a ‘confidence’ value reflecting how binary the 
vector was (since all targets were binary feature sets). 
Formally, the output vector was thresholded at 0.5 (if x<0.5, 
x=0; if x>0.5, x=1) and the Euclidean distance was derived 
between actual and thresholded versions. The mechanism 
with the highest confidence was assigned the winner and 
drove the final output. Without Output competition, the 
output of each mechanism was summed to create the net 
input to the output layer. 
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Over-application of the rule to exception verbs
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Figure 2: Developmental trajectories and interference 
errors for the different architectures 

Parameters: Models were trained using the 
backpropagation algorithm with a cross entropy error 
measure, learning rate of 0.1, momentum of 0, for 500 
epochs (random order without replacement). The full 
training set was used rather than an incrementally increasing 
set, so these simulations do not aim to capture an early high 
performance on a restricted set of regular and exception 
verbs. Performance was measured at 1, 2, 5, 10, 25, 50, 100, 
200, and 500 epochs of training. Six replications of each 
network were run using different random seeds. Error bars 
are omitted from figures for clarity but all reported 
differences are reliable. 

Results 
We begin with the developmental trajectories generated by 
each system. Figure 2 compares modular, emergent, and 
redundant systems when the exception mechanism has low 
resources. The modular condition generated fast learning of 
regulars and high generalization of the rule, even to novel 
stems bearing low similarity to anything in the training set 
(sim: 97%, nosim: 65%). Pinker (1991, p.532) implies that 
rule(sim) and rule(nosim) generalization should be at the 
same level, suggesting our proxy rule learning mechanism is 
not sufficiently powerful for the DM account. However, the 
modular system could not learn the exceptions; the rule 
mechanism was always more confident of its answer than 
the exception mechanism because it was learning a more 
function. The redundant system learnt more evenly but did 
not reach ceiling on either regulars or exceptions because 
the rule mechanism didn’t have the power and the exception 
mechanism didn’t have the resources to learn the whole 
problem. The emergent system reached ceiling on regulars 
and exceptions, but with generalization at 84% (sim) and 
31% (nosim).  

When the exception mechanism was given higher 
resources, the modular system still failed on exceptions for 
the same reason, although there was no some presence of 
the exceptions in the output, especially for EP3f. Both 
emergent and redundant systems reached ceiling and 
showed comparable generalization (sim: 87 vs 85%, nosim: 
32 vs 28%). The modular system retained its much higher 
generalization (sim: 97%, nosim: 61%). The Revised DM 
condition, with an exception mechanism trained on both 
regulars and exceptions performed little different to the 
modular. 

Figure 2 bottom panel depicts interference errors (over-
regularization of exceptions) for each exception type across 
training, for all systems. All systems exhibited these errors, 
and all showed the comparatively reduced vulnerability of 
the higher frequency EP3f patterns. For modular and 
Revised DM systems, the errors never went away.  
Interference errors per se, therefore, are not diagnostic of 
architecture. Of course, their exact timing and proportions 
may be in a detailed comparison to empirical data, although 
that is not the aim of the current simulations. 

Let’s try and fix the modular systems. Exception 
mappings are more complicated, so the rule mechanism is 

always likely to be more confident of its regular response 
than the exception mechanism is of its (mostly) 
unsystematic transformations. One way to fix the problem is 
to bias the output of the exception mechanism, amplifying 
its confidence level. Figures 3-5 show the change in 
developmental trajectories that different levels of biasing 
produced, for the low resource modular, high resource 
modular, and revised DM respectively. In each case, results 
are split into training and generalization. The bias factor 
simply multiplied the confidence value of the exception 
mechanism by a fixed value. We plot trajectories for biases 
of x1 (original), x2, x5, x10, x50, x100, x200, x250, and 
x1000.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Training set: Modular (high exception resources)
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Novel items: Modular (high exception resources)
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Figure 4: biased trajectories for the modular system 

Novel items: Modular (low exception resources)
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Training set: Modular (low exception resources)

0%

20%

40%

60%

80%

100%

1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0 1 5

2
5

1
0
0

5
0
0

P
ro

p
o

rt
io

n
 c

o
rr

e
ct

 

1
2
5
10
50
100
200
250
1000

 Regular                       EP1                          EP2                     EP3f 

Exception 
route Bias 

Figure 3: trajectories for the modular system with biasing 
to increase the role of the exception mechanism 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This way of fixing the modular systems may seem post-

hoc, but one can imagine how an optimal biasing value for 
Output competition might be derived during training. The 
bias starts at 1 and is increased (by some small amount) 
each time the exception mechanism has the correct output 
but fails to block operation of the rule mechanism. 

None of the bias values considered were sufficient to 
allow exceptions to be learned in the low resource modular 
system (Figure 3). Notably, as exception bias values were 
increased, regular learning slowed, rule generalization 
decreased, and irregularization of novel stems (e.g., 
ling=>lang) increased. Nosim generalization, the key 
domain of the rule mechanism, collapsed as soon as biasing 
exceeded x2. 

In the high resource condition, the modular system 
reached ceiling performance by the end of training when the 
exception bias was x200 (marked by asterisks in Figure 4). 
At this bias level, generalization for rule(sim) was 83%. By 
comparison, for the emergent system it was 87% and for 
redundant 85%. For nosim, the modular was 4%, the 
emergent was 32% and the redundant was 28%. Acquisition 
of regulars was much slower for the biased high resource 
modular system compared to emergent and redundant 
solutions, but its acquisition of exceptions was faster. 

Finally, the partially redundant Revised DM condition 
revealed a similar pattern to the high resource modular on 
the training set. However, since the exception mechanism 
was now required to learn the whole training set, its 
confidence needed greater amplification. Performance was 
just under ceiling with a bias of x1000. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The main difference between Revised DM and high 
resource modular was that the former did not experience the 
marked slowing in regular verb acquisition, or reduction in 
generalization. Final sim generalization of the rule was 90%, 
slightly higher than emergent and (fully) redundant. This 
marginal increase in generalization was the sole benefit of 
the rule-dedicated mechanism. (Nosim was at a comparable 
28%). The generalization advantage stemmed from the fact 
that while the influence of the rule mechanism is initially 
reduced early in training (as for the high resource modular), 
some of this function was taken up early in training by the 
exception mechanism, which is itself able to generalize the 
rule. Figure 5 demonstrates the relative influence of the two 
mechanisms in driving regulars and rule generalization. 

Discussion 
Modular solutions to learning the past tense were 
problematic because the component mechanisms generated 
different outputs for the same input, and the competition 
between the mechanisms then had to be resolved. While 
redundant architectures also required the settling of this 
competition, the mechanisms were more often than not 
offering similar outputs. What the modular system gained 
by including a dedicated rule mechanism, it then lost in 
mediating the competition between its two mechanisms. For 
the exception mechanism to speak loud enough to block the 
rule mechanism, it had to eat into the generalization offered 
by the rule mechanism. Both emergent and redundant 
solutions were more successful developmental solutions. 
The emergent was most efficient in terms of resources 
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Which route drives behaviour? Application of the rule
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Training set: Revised DM
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Figure 5: biased trajectories for the Revised DM condition

because its sole reliance on Update competition encouraged 
cooperation between its two components. Interference errors 
in children (e.g., thinked) have been seen as diagnostic of a 
modular solution and faulty blocking. However, these errors 
appeared in emergent and redundant architectures as well. 

Our results are consistent with a simulation result reported 
by Calabretta et al. (2000). When these authors trained a 
robot to learn a sensorimotor task, duplication of partially 
adapted modules greatly facilitated evolution of functional 
specialization. But there was no evidence that functionally 
specialized modular systems had inherently better 
performance or were more trainable than non-specialized 
modular systems. In the language domain, our results are 
reminiscent of those of Hahn and Nakisa (2000) in a model 
learning the default German plural. Addition of an explicit 
rule did not aid generalization (although in this case, the 
rule mechanism was not an integrated developmental 
element of model). Our findings do not serve to undermine 
Pinker’s (1991) dual mechanism model of past tense 
formation because our simulations were not an 
implementation of this theory. We used an associative rule-
learning mechanism rather than a symbolic rule acting on 
the stem as a variable (whose implementation is as yet 
unclear). Our findings suggest the nature of ‘blocking’ will 
be key for the operation of an implemented version when it 
arrives. 

Conclusion 
What is modularity good for? When processing components 
drive separate outputs and the information required by each 
output is independent, modular developmental solutions 
may be optimal (Calabretta et al., 2003). When processing 
components receive information from a common input and 
have to drive a common output, a pre-specified modular 
architecture may be inefficient, since it is necessary to 
resolve a competition for which module will drive output.  
Either an emergent or redundant solution using the same 
resources may be superior. For the problem domain 
considered, cooperation is more efficient than competition. 
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