
Abstract: Developmental
psychology is ready to blos-

som into a modern science that
focuses on causal mechanistic

explanations of development
rather than just describing and clas-

sifying the skills that children show at
different ages. Computational models
of cognitive development are formal

systems that track the changes in infor-
mation processing taking place as a
behavior is acquired. Models are general-
ly implemented as psychologically con-
strained computer simulations that learn
tasks such as reasoning, categorization, and
language. Their principal use is as tools for
exploring mechanisms of transition (devel-
opment) from one level of competence to
the next during the course of cognitive devel-

opment. They have been used to probe ques-
tions such as the extent of ‘pre-programmed’ or

innate knowledge that exists in the infant mind,
and how the sophistication of reasoning can

increase with age and experience.

I. Understanding the
Origins of Reasoning 

The Swiss psychologist Jean Piaget was possi-
bly the first man to ask how thinking emerged
from the simple reflexes of the newborn to the

abstract logical reasoning of the adult (Piaget 1971; Boden 1995).
He saw himself as an empirical philosopher whose goal it was to answer

the fundamental questions of epistemology (the study of the origins of
knowledge) through rigorous experimentation. He asked how knowledge,

especially abstract conceptual knowledge and logic-based reasoning, could
emerge from a child’s interactions with the world. Piaget produced a vast body of
work exploring the development of concepts like Space, Time, Number, and
Causality. He is widely recognized as having identified the key questions that have
set the agenda for cognitive development research over the last 70 years.

Piaget was greatly influenced in his thinking by the philosophies of Kant and
Bergson, but also by the Cybernetics movement of the early twentieth century.
He believed that children constructed an understanding of the world through
active engagement with the world, and that feedback on one’s actions played

a crucial role in learning and development. Unfortunately, he failed to
ground many of his theoretical proposals because he lacked an appro-

priate vocabulary with which to express his dynamic and mech-
anistic ideas (Boden 1988). The arrival of computational

modeling has provided a suite of powerful con-
ceptual tools for addressing many of

Piaget’s original ideas. 
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Contemporary theories of cognitive development lie
broadly along two distinct (albeit related) dimensions. One
of these is the Nativist vs. Empiricist dimension (sometimes
known as the nature-nurture debate). Radical Nativists believe
that almost all knowledge is available to the infant prior to
any experience. Learning only serves to fill in minor details.
Radical Empiricists believe that the infant is born with pow-
erful learning abilities but no prior knowledge. All knowl-
edge is acquired through some form of experience with the
world. Computationally, the approaches differ in the con-
straints that are placed on learning. In a cognitive computa-
tional model, the researcher uses psychological empirical
data to constrain choices about representations and training
sets. For example, a cognitive model designed to learn gram-
mar might include input representations of individual words
and output representations of who-did-what-to-whom. It
might then be trained on samples of child-directed speech.
Psychological approaches with a nativist leaning will produce
models with tight constraints on their architectures, activa-
tion dynamics, input/output representations, or learning
algorithms, so that the system can only support a restricted
set of input-output functions. Exposure to a training set just
serves to push the system into one of this limited set of
states. For example, in the Chomskian theory of language
acquisition, mere exposure to language is held to ‘trigger’
the selection of the correct subset of a Universal Grammar
that is present at birth (see for example, Buttery 2004).
Internal functions would be limited to tree-structures and
operations over tree-structures. The latent structure of child-
directed speech would have little causal role in shaping the
final internal function. By contrast, models of a more empiri-
cist bent will have fewer constraints on the functions that can
be supported, so that the information in the training set plays
a stronger role in determining which function is acquired.
For example, some theories of the development of the visual
system argue that when a fairly general self-organizing learn-
ing system is exposed to natural visual scenes, the latent sta-
tistical structure of these scenes is sufficient to generate many
of the kinds of representational primitives observed in the
low-level visual system, such as center-surround receptive
fields (Field 1999a, b).A second dimension that distinguishes
contemporary theories of cognitive development is the dis-
tinction between symbolic vs. sub-symbolic representations.
Those in the symbolic camp believe that cognition is best
characterized as a rule-governed physical symbol system. In
this view, cognitive development consists in the modifica-
tion of mental rules. By contrast, those in the sub-symbolic
camp see cognition as a highly interactive dynamic system
(e.g., an artificial neural network). In this system, the causal
entities are continuous, distributed and cycling patterns of
activation. Such networks do not operate as physical symbol
systems, or at best approximate them in certain narrow cir-
cumstances. In this latter view, development consists in the
continuous tuning of the underlying parameters of the cog-
nitive system.

Piaget concentrated on studying development in nor-
mal populations. His theory therefore aimed to character-
ize the cognitive stages through which the ‘average’ child
passes. However, in contemporary psychological theory,
normal cognitive development is increasingly seen within
the context of the ways that development can go wrong or
operate sub-optimally. For example, children with genetic
disorders can exhibit uneven cognitive profiles and some-
times learning disabilities, such as in Down syndrome,
autism, and Williams syndrome. Apparently more circum-
scribed disorders can be found that differentially impact on
language development or on the acquisition of reading,
observed in Specific Language Impairment or dyslexia.
Even within the normal population, children of the same
age can differ in their cognitive ability. At the
upper end, children are viewed as gifted,
while at the extreme lower end, normal
development begins to resemble dis-
ability. These variations in develop-
ment throw into rel ief  the
boundary conditions that must
shape normal development
(Karmiloff-Smith 1998).  In
recent years ,  computat ional
models of development have
provided a productive tool to
investigate how variations in the
properties of learning systems—or
the potentially enriched or impover-
ished learning environments to which
they are exposed—can help or hinder the
acquisition of cognitive abilities (Thomas and
Karmiloff-Smith 2003).

In the rest of this article, we present a number of mod-
els to illustrate different aspects of cognitive development
where computational approaches have produced material
advances in our understanding of the origins of knowl-
edge. As will become apparent in this review, most symbol-
i c models  have emphasized the tractabi l i ty of the
knowledge representations involved in cognitive develop-
ment at the expense of implementing explicit transition
mechanisms. In contrast most sub-symbolic models have
emphasized the specification of a developmental mecha-
nism at the expense of the tractability of the knowledge
representations. In other words, to the extent that the
human mind needs complicated and densely structured
mental representations to deliver a cognitive skill, it
becomes hard to see how these representations are
acquired. The theorist is left with three ways out of this
conundrum. Either complex behavior are generated by
representations that are in large part innate; or we don’t
yet understand the full repertoire of learning mechanisms
available to the human mind; or we are currently overesti-
mating the complexity of the representations that the
human mind needs to generate its complex behaviors.
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II. Why Build Computational Models 
of Cognitive Development

A. The Computer Modeling Methodology
Computer models are invaluable tools for transforming devel-
opmental psychology from a descriptive science into a mature
explanatory science (Mareschal and Thomas in press). When a
researcher has to translate his or her underlying theory into an
explicit computer model, he or she must now specify precisely
what is meant by the various terms. Terms such as representa-
tions, symbols, and variables must have an exact definition to
permit implementation. The degree of precision required to
construct a working computer model avoids the possibility of
arguments arising from the misunderstanding of imprecise ver-
bal theories. For example, ‘short-term memory’ conveniently
summarizes a cluster of human behaviors, yet it is another thing
to build the persistence of information over time into a process-
ing system. How much information is stored? How long is it
stored for? There is no longer any room for vagueness!

Secondly, building a model that implements a theory pro-
vides a means of testing the internal self-consistency of the the-
ory. A theory that is in any way inconsistent or incomplete
will become immediately obvious when trying to implement it
as a computer program. The inconsistencies will lead to con-
flict situations in which the computer program will not be able
to function. Such failures point to a need to reassess the situa-
tion and to the re-evaluate the theory.

One implication of these two points is that the model can
be used to work out unexpected implications of a complex
theory. Because the cognitive system operates in a highly com-
plex world, with a multitude of information sources constantly
interacting, even a simple process theory can lead to uninter-
pretable behaviors. Here again, the model provides a tool for
teasing apart the nature of these interactions and corroborating
or falsifying the theory. One of the earliest applications of arti-
ficial neural networks to cognitive processing (McClelland and
Rumelhart 1981) was able to demonstrate how constrained
interactivity could solve the following puzzle: it is easier to
recognize a written letter when it is presented in the middle of
a word than in a nonsense string—but how does the reader
know that the letter is in a word or a nonsense string before
having recognized it?

Perhaps the main contribution made by computational
models of cognitive development is to provide an account of
the representations that underlie performance on a task that
also incorporates a mechanism for representational change.
One of the greatest unanswered questions of cognitive devel-
opment is the nature of the transition mechanisms that can
account for how one level of performance is transformed into
the next level of performance at a later age. This is a difficult
question because it involves observing how representations
evolve over time, and tracking the interactions between the
developing components of a complex cognitive system. Build-
ing a model and observing how it evolves over time provides a
tangible means of doing this.

Formulating development in computational terms forces
the theoretician to be explicit about the transitional mecha-
nisms that underlie information processing. Piaget’s own
mechanistic theory provides an excellent example of why this
is necessary. He described cognitive development in terms of
three processes: assimilation, accommodation, and equilibra-
tion. Assimilation consisted in adapting or filtering incoming
information to make it more compatible with existing
knowledge representations. In contrast, accommodation con-
sisted in adapting one’s knowledge representations to make
them more consistent with novel information. Equilibration
was the process by which assimilation and accommodation
interacted to cause cognitive development and can therefore
be understood as the play-off between these processes of sta-
bility and change. Now, while assimilation and accommoda-
tion may capture intuitive notions of what is involved in
cognitive development, they are too loosely defined to be of
any explanatory value. For example, could this theory predict
how many errors should be enough to trigger accommoda-
tion? Several artificial neural network (or ‘connectionist’)
computational models of cognitive development have sought
to address this vagueness by providing computational imple-
mentations of assimilation and accommodation (e.g.,
McClelland 1995; Shultz, Schmidt, Buckingham and
Mareschal 1995). In these models, assimilation corresponds to
activation flow through the neural network while accommo-
dation corresponds to updating connection weights or the
network architecture to reduce output error.

III. Models of Development in Infancy
Infancy is an ideal age range to begin modeling because infant
behaviors are not complicated by the presence of language and
sophisticated meta-cognitive strategies. Infant abilities are
closely tied to their developing sensori-motor skills.

A. Object-Directed Behaviors
Kant identified objects as a fundamental category of cogni-
tion. The ability to represent hidden objects liberates infants
from the tyranny of direct perception. It is the first step
towards representational thought. Piaget (1954) suggested
that infants’ progress through 6 stages on the way towards
reaching an adult level of understanding of object perma-
nence at the age of 2. Many of Piaget’s original findings
have been replicated. However, changes in methodology,
such as relying on where infants look rather than their ability
to manually reach for objects, have suggested that infant’s
understanding of hidden objects is far more precocious
(Mareschal 2000). These more recent studies have tended to
focus on infant competence at different ages but not on the
mechanisms of development from one level of competence
to the next. How can the infant’s knowledge of the perma-
nence of objects improve?

There are relatively few computational models of infant
object-directed behaviors. Early models adopted a symbolic
stance on the mechanisms that drive behavior and were thus
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implemented in rule-based production systems (e.g., Luger,
Bower, and Wishart 1983; Prazdny 1980). Unfortunately,
these were basically competence models that described infant
behaviors but did not provide a mechanistic account of
development. They proposed different sets of rules to
describe behavior at different ages, but did not explain how
new rules could be acquired or how one
set of rules was transformed into another
set of rules. More recent symbolic mod-
els have turned to attention-based
accounts of object processing in an
attempt to explain infant behaviors
(Simon 1998). Unfortunately, these
models still fail (by and large) to imple-
ment any account of how development might occur.

One mechanistic learning model has implemented a parallel
processing version of Piaget’s sensori-motor theory of infant
development. Drescher (1991) tried to show how the co-
ordination of intra- and inter-modal perceptual motor schemas
could lead to a single unified representation of object. Percep-
tual motor schemas were encoded as “context-action-result”
rules and implemented in a parallel processing machine. Learn-
ing consisted in using marginal probabilities to fill in context
and results slots in appropriate perceptual-motor schemas.
Although this system developed an intricate network of intra-
and inter-modal schemas that mimicked the infant’s sensori-
motor integration, it did not develop according to the pattern
described by Piaget. 

A number of connectionist models have been proposed
relying on sub-symbolic representations. In one family of
models, a partially recurrent autoencoder network learns to
predict the reappearance of a stationary object from behind a
moving screen that temporarily hides the object (Munakata,
McClelland, Johnson and Siegler 1997). Network perfor-
mance is measured by taking the difference in response of the
nodes coding the location of the hidden object when an
object should be revealed, and subtracting it from the
response of the node when an object should not be revealed.
An increase in this difference is interpreted as increased
knowledge of hidden objects. This model demonstrates that
the knowledge of objects necessary to retrieve them from
behind a screen can be graded and arise incrementally though
interactions with an environment. 

Mareschal, Plunkett and Harris (1999) described an alter-
native connectionist model that is more closely tied to the
neuropsychological finding that knowledge about an
object’s identity and its location are processed along separate
neural pathways. This model uses a combination of modules
to implement dual-route processing. One route learns to
process spatial-temporal information while the other route
learns to process feature information. Finally, a response
module recruits and co-ordinates the representations devel-
oped by the other modules as and when required by a
response task such as reaching. The specialization of the two
routes is initially defined only in terms of different associa-

tive learning mechanisms that act on the same input.
Empirical studies inspired by this developmental model
have subsequently found strong evidence for a dissociation
between location information and identity information in
the memory of young infants for hidden objects (Mareschal
and Johnson 2003).

B. Perceptual Categorization 
Categorization lies at the heart of cognition because it is the
process we relate new individual experiences to our existing
knowledge. It is therefore not surprising to find that great
deal of effort has been exerted in trying to understand the
early roots of category formation. Many infant categoriza-
tion tasks rely on preferential looking or habituation tech-
niques, based on the finding that infants direct more
attention to unfamiliar or unexpected stimuli (Mareschal
and Quinn 2001). In a preferential looking experiment, the
infant is offered two stimuli to look at: preference for one
indicates an ability to distinguish between them. Habitua-
tion relies on the fact that infants become board by the rep-
etition of a sequence of identical stimuli. Re-engagement
with a new stimulus is evidence that the infant can distin-
guish it from the previous items. Connectionist autoen-
coder networks have been used to model the relation
between sustained attention and the real-time construction
of mental representations in the infant (Mareschal, French
and Quinn 2000). The successive cycles of training in the
autoencoder reflect an iterative process by which a reliable
internal representation of the visual input is established.
This approach assumes that infant looking times are posi-
tively correlated with the network error. That is, the
greater the error, the more novel the stimulus, because it
takes more training cycles to reduce the error. The more
novel the stimulus, the longer the looking time.

The perceptual categories formed by infants are not always
the same as the corresponding adult categories. For example,
when 3 to 4-month-old infants are shown a series of cat pho-
tographs, they will form a category of CAT that includes
novel cats and excludes dogs (as will adults). Thus, after a
series of cats, a novel cat will not be interesting to the infant
but a novel dog will be. However, when shown a series of
dog photographs, the same infants will form a category of
DOG that includes novel dogs but also includes cats (in con-
trast to adults). Many aspects of early infant perceptual catego-
rizations (including this asymmetric exclusivity of CAT and
DOG categories) are captured by the connectionist autoen-
coder model. While adults apply top-down schemas when
recognizing photographs of cats and dogs, both 3- to 4-

In contemporary psychological theory, normal cognitive
development is increasingly seen within the context of
the ways that development can go wrong or operate
sub-optimally.
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month-olds and the autoencoder networks simply process the
bottom-up information in these images. Hence, their internal
category representations are yoked to the distributional prop-
erties of features in the images. The model validates the idea
that categorical representations can self-organize in a neural
system as a result of exposure to the familiarization exemplars
encountered within the test session itself.

This model can also be used to make new predictions
about what kinds of categories infants will form when pre-
sented with particular Cat and Dog pictures. French and
colleagues (French, Mareschal, Mermillod and Quinn 2004)
generated sets of cat and dog pictures that all looked equiv-
alent to adults, but which led to very different categoriza-
tion behaviors in the infants. Because the infants were
attending to low-level features of the image, their responses
could be manipulated by changing the distribution of these
features. This was not the case with the adults who, driven
by their high-level schemas, continued to respond to all
images in the same way.

IV. Models of Development in Childhood
Language acquisition marks the end of infancy and the begin-
ning of childhood. Reasoning and conceptual development are
the hallmark of cognitive development in childhood. The
models in this section all focus on some aspect of reasoning
development. We begin by reviewing models that have
explicitly tried to implement Piagetian ideas, that is, develop-
ment that passes through a sequence of stages of increasingly
sophisticated reasoning. This is followed by a review of work
that breaks away from the Piagetian tradition.

A. Modeling Piagetian Stage Development
There have been several attempts to explain the apparent
stage-like growth of competence in children in terms of self-
organization in dynamic systems, competition between cogni-
tive growers, and bifurcation theory (e.g., van der Maas and
Molenaar 1992; van Geert 1998). However such accounts
have tended to rely only on mathematical descriptions that are
either not implemented in running computer models or not
grounded in measurable information processing components of
the cognitive system.

Researchers trying to implement Piagetian notions of devel-
opment have applied their models to simulating children’s per-
formance on key tasks. One such task is known as conservation,
where children learn that certain properties of objects are pre-
served through transformations while others are not. Thus, the
volume of water is not altered by transferring it between differ-
ent shaped jugs. Several models have applied themselves to the

process of learning these invariant properties under transforma-
tion (Klahr and Wallace 1976; Richardson, Forrester et al.,
2006; Shultz 1998). Another such task is the seriation (or sorting)
task. Piaget found that children’s ability to order a set of sticks
according to length developed through a number of stages. In a
first stage, children were unable to sort the sticks. In a second
stage, they were able to apply local ordering relations but could

not extend the order to the set as a whole.
In the third stage, they were able to sort
the set of sticks, but only by applying a
costly trial and error strategy. Finally, in
the fourth stage, children were able to sort
the set quickly and efficiently by applying
a systematic selection strategy. 

Young (1976) approached this task from an information
processing perspective. He carried out detailed analyses of the
actions children carried out at different ages when sorting
blocks. Based on the results of protocol analyses, he devel-
oped a rule-based production system that captured children’s
performance at each stage of development. Progress from one
stage to the next was modeled by the (hypothesized) modifi-
cation of the rules. Although this model provided a good fit
to children’s behavior at individual stages, the model does
not include a working account of how those rules are modi-
fied. By contrast, a more recent connectionist model of the
seriation task explicitly demonstrates how development could
occur (Mareschal and Shultz 1999). In this model, develop-
ment consists in the gradual tuning of connection weights as
the model is exposed to stick-sorting problems of varying
complexity. As it learns, the model exhibits a gradual exten-
sion of knowledge about small sets to larger sets. It not only
captures the stage progression described by Piaget, but it also
captures the variability in sorting behaviors observed both
within and between different children.

B. Beyond Piaget: The Balance-Scale Task
A recent benchmark of cognitive development is the bal-
ance-scale task. This was first developed by Inhelder and
Piaget in the 1950s and later significantly extended by
Robert Siegler. Siegler (1976) explored children’s develop-
ing abilities to reason about a balance scales (like a scaled-
down version of a see-saw). In these problems, children
were presented with a symmetric balance scale with 5
equally spaced pegs on either side of the fulcrum. Different
numbers of weights were then placed on pegs to the left
and the right of the fulcrum and children were asked to
predict whether the balance scale would tip to the left, to
the right, or remain balanced. 

Children show an increasingly sophisticated ability to rea-
son about these problems with increasing age. Seigler (1976)
demonstrated that children’s strategies at different ages could
be characterized by different rules. Rule 1 children, for
instance, relied only on a dominant dimension (weight) to
predict which side the balance scale would tip. These
children would predict that the side with the most weights

Computer models are invaluable tools for transforming
developmental psychology from a descriptive science into
a mature explanatory science.
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would be the side that the balance scale would tip. Rule 2
children would apply the same rule as the proceeding chil-
dren, but had an additional rule stating that if the number of
weights was equal on both side, the side with the greatest
distance would predict the side on which the balance scale
would tip. Rule 3 children behaved like the Rule 2 children
with the exception that if the weight and distance cues pro-
vided conflicting answers they would
guess which side went down. Finally,
Rule 4 children had a set of rules that
effectively computed the torque on both
sides of the balance scale (the number of
weights multiplied by the distance from
the fulcrum) and chose the side with the
greatest torque. Seigler suggested that this knowledge was
represented in the form of a growing decision tree. Klahr
(1992) pointed out the equivalence of this representational
format to rules—a format consistent with production system
models of cognitive development. 

Both connectionist (McClelland 1995; Richardson,
Baughman et al., 2006; Shultz, Mareschal and Schmidt
1994) and decision-tree approaches (Schmidt and Ling
1997) have subsequently been applied to capturing the
developmental stages of the balance scale task have been
proposed. The connectionist models construe the problem
as one of integrating information from two sources. They
capture stage development in terms of continuous gradual
weight changes and/or recruitment of additional computa-
tional resources (internal units) to advance learning. An
assumption of these models is that children have greater
experience with weight comparisons than distance compar-
isons. The decision tree model uses the C4.5 tree-inducing
algorithm. Children were hypothesized to have an increas-
ing memory capacity and to care increasingly about the
detailed correctness of their answers. While this latter model
captures the main features of children’s performance, the
decision trees it developed did not map onto those pro-
posed by Siegler to reflect children’s knowledge at different
ages. Simulations of children’s performance on the balance
scale task bring into relief the distinction between symbolic,
rule-based models and sub-symbolic, network-based models,
even when it is agreed that the behavior itself can be
described as rule following.

C. Modeling of the Development of Reasoning
Many of the successful developmental models described above
are connectionist models. Such models process information
based on the surface similarity between different exemplars.
However, there are cases when children’s (and indeed adults’)
reasoning does not follow surface similarity. Analogical reason-
ing, for example, requires the child to distance his or herself
from the surface similarity between the target and vehicle
domains. Solving a problem such as “A cat to a kitten is like a
dog to a ?” probes for knowledge of abstract relations like off-
spring. This contrasts with the example of infant categorization,

where relationships between cats and dogs depending on the
similarity of visual features. For analogical reasoning problems,
children move from basing their analogies on surface similarity
between the two domains (such as color) to structural similarity
(such as the function of an object) between the ages of 6 and 9
years. On the face of it, this reliance on structural similarity is
difficult for connectionist systems to capture, given that the

models we have described are driven by learned associations
between surface features.

Gentner and colleagues (Gentner et al., 1995) have sug-
gested that adults and children solve analogical problems by
comparing mental representations via a structure-mapping
process of alignment of conceptual representations. A struc-
turally consistent match conforms to a one-to-one mapping
constraint between the domains. For our example, the rela-
tion offspring derived from the cat-kitten comparison is
combined with dog to access the structured representation
<dog has offspring puppy>. The process is implemented in
the Structural Mapping Engine (SME) model. This SME is
used to model the relational shift in children’s analogical
reasoning in terms of increased domain knowledge. As
their knowledge of domain relations increases and concepts
like offspring are acquired, so children’s relational represen-
tations within a domain become richer and deeper. This
increases the likelihood that their comparisons will focus
on matching relations rather than surface features. In this
view, what develops between 6 and 9 years is only knowl-
edge and not processing.

Recent attempts to explain the origins of analogical reason-
ing in terms of connectionist neural network properties have
de-emphasized the importance of structural alignment in ana-
logical completion. Leech and colleagues (e.g., Leech,
Mareschal and Cooper 2003) have suggested that, at least in
young children, a form of semantic priming in a large semantic
network can best explain analogical completion of the sort
described above. 

Shrager and Seigler (1998) presented a model of strategy
choice, with the intention of providing an account of the
range and variability of strategies observed in young children’s
problem solving. Their model addressed the strategies used by
children when adding integers. The strategies are explicitly
represented in terms of rules. Strategy choice is probabilistic.
The probability of retrieving and executing a strategy depends
on the previous association of that strategy with an outcome in
conjunction with considerations of cost and efficiency. The
strategy pool evolves according to a Darwinian procedure in
which in frequently used strategies die off and new strategies
enter the pool via random perturbation of existing strategies.

Researchers have begun to use ‘synthetic brain imaging’
as a way to observe the fluid dynamics of damage and
recovery in artificial neural networks.
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V. Understanding Information Processing in the System
One drawback of simulations of complex systems is that the
interactions underlying the model’s overt behavior can be
opaque to the modeler, and therefore compromise theory

development. Models that simulate human behavior but are
themselves impenetrable are of no use to the psychologist. In
symbolic, rule-based models, the explicit rules that drive behav-
ior offer transparent explanations. However, sub-symbolic
models offer a greater challenge and motivate new methods for
understanding system performance. For example, researchers
have begun to use ‘synthetic brain imaging’ as a way to
observe the fluid dynamics of damage and recovery in artificial
neural networks (e.g., Cangelosi and Parisi 2004). Figures 1
and 2 exemplify this approach, using the simulations of
Thomas and Karmiloff-Smith (2002) that explored the conse-
quences of early brain damage. Those researchers used a partic-
ular aspect of language development, the English past tense, as
a test domain. The English past tense has a dual nature, include
both regular (talk-talked) and irregular (sing-sang, go-went,

hit-hit) past tense forms. Some researchers argue that the cog-
nitive system uses different mechanisms to learn each type of
verb (Pinker 1991) and even that there are separate areas in the
brain for each mechanism (Tyler, Marslen-Wilson, and Sta-

matakis 2005). Other researchers argue
that sub-symbolic connectionist systems
can acquire both regular and irregular
mappings in the same network. Thomas
and Karmiloff-Smith (2002) demonstrat-
ed that in a dual-route network, emer-
gent specialization of function could
occur so that across development, one
route came to specialize in processing
regular verbs while the other processed

irregular verbs. Specialization is driven by the greater complex-
ity of irregular mappings and the fact that only one route in
this model included the hidden units that are necessary to learn
linearly inseparable irregular mappings.

Figure 1 shows a schematic of the architecture of this
dual-route backpropagation network. This is a standard
feed-forward connectionist neural network that is trained to
associated the stem of a verb with its English past tense. Fig-
ure 2 (left column) uses the synthetic brain-imaging tech-
nique to demonstrate the involvement of each of the two
routes in producing the regular past tense across develop-
ment. The colors depict how hard each route is driven by
the input. The other two columns reveal what happens in
the network when it experiences damage to either the left or
right route prior to training.

The results highlight the dynamics
of development and compensation.
Under conditions of normal develop-
ment, there is partial specialization of
function to different components of
the system (e.g., specialization in the
left or right brain hemispheres by late
childhood). However, when one com-
ponent is damaged early in develop-
ment by lesioning a large proportion of
the connections, the other component
is able to compensate to some extent,
taking on the overall function. Never-
theless, residual resources in the dam-
aged component may still be recruited
where possible.

There is some evidence for this in
recovery after early child brain damage
(Liégeois et al., 2004). After early unilat-
eral brain damage, children are delayed
in their development but usually recover
to fall within the normal cognitive range
by adolescence. However, there may
remain subtle deficits in behavior that
depend on the original side of damage,
an effect also exhibited by the dual-route

FIGURE 1 Architecture of an associative connectionist network learning the English past tense
problem, used to study the dynamics of damage and recovery in developing cognitive systems
(Thomas and Karmiloff-Smith 2002).
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The nature-nurture debate has thus been rephrased into
a question of how detailed the initial computational
constraints must be in the cognitive system, given the latent
structure that we now know is present in the physical and
social environment to which infants are exposed.
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model. Interestingly, these hemisphere-dependent deficits are
more prominent in the development of visuo-spatial process-
ing than in language processing (Bates and Roe 2001; Stiles
2005). The fluid compensation exhibited by children after
early focal brain damage and captured in
this model is less evident in adults, where
there appears to be reduced scope for
reorganization. A related avenue of com-
putational modeling work has therefore
begun to explore the factors that explain
why the plasticity of the cognitive system
appears to reduce with age (Thomas and
Johnson 2006).

VI. Challenges to Current Models 
of Cognitive Development
We have seen how a shift to more formal, computational
approaches to cognitive development has forced psychologists
to confront some of the hard theoretical problems, and in par-
ticular, the nature of transitional mechanisms. Models differ in
their appeal to symbolic or sub-symbolic forms of computation.
Symbolic computation offers a better characterization of the
abstract reasoning skills observed in older children and adults
and of, for example, the complexities of syntax
in language. However, models relying on rule-
based formats have continued to struggle to elu-
cidate the process by which more complex rules
are acquired. The sub-symbolic approach makes
development seem more straightforward, since it
involves the tuning of continuously valued para-
meters through experience. Yet its domains of
greatest success tend to be those involving the
association of features and pattern recognition
skills. The reconciliation of these two approach-
es is a challenge that lies ahead.

The nature of representation is tied up with
two other long-standing debates. How much
of our cognitive system is genetically specified,
and how much is a product of our cultures and
environments? Modeling has not settled this
issue but offers tools to construe what ‘geneti-
cally specified’ might mean. In the context of
capturing behavioral deficits in genetic devel-
opmental disorders, for instance, it corresponds
to computational constraints that affect the tra-
jectories of learning. The nature-nurture
debate has thus been rephrased into a question
of how detailed the initial computational con-
straints must be in the cognitive system, given
the latent structure that we now know is pre-
sent in the physical and social environment to
which infants are exposed. These days, the
focus is on exploring how the process of
development could happen given a particular
learning system and a particular training set.

Finally, while computer models allow us to formulate
questions about what can possibly cause cognitive develop-
ment (e.g., changes in processing capacity, processing speed,
knowledge, and strategy choice) more constraints are

required to identify the actual mechanisms involved in chil-
dren’s cognitive development. Recent advances in neu-
roimaging techniques have allowed us to place greater
constraints on how information is processed in the brain.
Many of the models above make little use of these con-
straints and, in the future, such constraints should be incor-
porated in any functional models of development
(Westermann, Sirois, Shultz, and Mareschal 2006). Further-
more, cognitive development does not occur in a social vac-
uum. Vygotsky (1978) has emphasized the role of social
interactions in cognitive development. Society provides a

FIGURE 2 The use of ‘synthetic brain imaging’ to explore the involvement of each route
in processing regular verbs across development under normal conditions (column A),
and after initial unilateral damage to the left route (column B) or right route (column
C). Damage corresponded to lesioning 80% of connections. Colors demonstrate how
hard each route is driven by the input (dark blue = least, yellow = most). Formally, val-
ues correspond to the product of activations along each weight and the magnitude of
the weight, summed for each unit. Excitation and inhibition are therefore treated equiv-
alently; they are also indistinguishable in human brain imaging techniques.

D
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Formal systems offer the ideal framework, and indeed
perhaps the only viable method, with which to capture
the multiple influences that shape the genesis of the
human mind.
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kind of cognitive scaffolding that nurtures and aids the
child’s cognitive development by actively selecting and fil-
tering the type of problems the child is faced with at any
age. Future models will need to consider these constraints to
reflect the child’s learning environment more accurately.
Indeed, significant steps are being made towards developing
models that incorporate constraints from multiple levels of
description . . . be it at the cellular level the functional brain
system level, the cognitive level or the social level of devel-
opment (Mareschal et al, in press). Formal systems offer the
ideal framework, and indeed perhaps the only viable
method, with which to capture the multiple influences that
shape the genesis of the human mind.
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