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• The balance scale task

• Variability 

• The computational study of variability

• Simulations

• Results

• Conclusions

The Balance Scale Task

• Problem-solving and reasoning

• Will the scale tip right, tip left, or balance?
(Inhelder and Piaget, 1958)

 

fulcrum 
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 Distance = 5 

 Weight = 1 
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Torque = Weight x Distance

Assessing performance

• Use six different types of balance scale 
problem:

 

 

 

 

 

 

Balance scale behaviour

• Behaviour is characterised in terms of rules
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Rule I

Rule 
II

Rule III

Rule IV

• Siegler’s four core rules

• More rules:

Rule IV

Addition (Add)

Rule III

Qualitative Proportionality (QP)

Rule II

Smallest Distance Down (SDD)

Rule I

Developmental profile

From Jansen and van der Maas (2002)

• Model of distribution of rules over age
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Variability

“Substantial variability is present during learning, even 
on tasks like the balance scale where most children 
use systematic rules before and after learning 
experiences…”

(Siegler and Chen, 1998, p303)

• Differences or fluctuations in behaviour or strategy

• Variability can be found both across individuals, and 
within the behaviour of a single individual

• A high degree of variability has been found around 
rule III

Why study variability?

• Within a single individual, increased variability 
presages the onset of developmental 
transitions

• Variability across individuals of the same age 
provides insight into general and specific 
intelligence

• Variations from the normal pathway are 
found in disorders

Computational study of variability

• Changes to the model and the environment

 

Tip left Tip right 

Input units 

Hidden units 

Output units 

• Number of hidden units

• Number of hidden layers

• Number of output units

Training 
set freq.

Prob type 
freq

8888CW

200200WD

2424CB

8888CD

100100D

500100W

12525B

• Proportion of problem types

• Restrict problem range

The Normal Model

(McClelland, 1989)

Environment

• Input encoding

• Learning rate

• Slope of transfer 

function

Simulations

1. Computational resources
• Number of layers

• Number of hidden units

2. Environment
• Limited range of problem types

• Change frequency of problem types

3. Learning rate

4. Case study
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The Normal Model

Increasing complexity
Training 
epochs

1 2 3 4

Transitions

Multi-Layer Models

 

 1HL: QP     R3      Add      R4 

 2HL: QP               Add      R4             

3HL: QP                           R4 
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Extra Hidden Units
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• Developmental profile for 1HL network

Changes to the Environment
• Restricted pattern set (Poor)

• Unbiased – no extra weight and balance problems (UB)

• Developmental profile for 1HL network:
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• Increasing the number of layers can improve performance on the

restricted pattern set

Implementing delay

• Individual differences in developmental 
disorders are sometimes characterised in 
terms of delay – i.e Down’s syndrome

• Obvious way to implement delay is to reduce 
the learning rate (lr)

• Reduced lr by 4 decrements
For example, [0.1: 0.08, 0.06,0.04, 0.02]

• How does lr affect the transitions the system 
exhibits?

Reducing the learning rate

• Roughly parallel shifts for all metrics from left to right

• Development slows down

• Poorer behavioural discriminability 
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Delay and LR

• Developmental disorders: performance 
asymptotes at lower level of complexity

• Models may “catch up” with extra 
training

• LR not a good sole candidate for 
explaining delay in disorders

Inter-individual variability

• Variability occurs during the development of 
individual children

• Risk of averaging across individuals

• Development can also include regression to 
less sophisticated rules
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Case Study

• Single model run with 1HL (lr = 0.008)
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10 epochs

60 epochs

40 epochs

70 epochs

80 epochs

Transitions: QP Add R3 Add R4

Conclusions

• Study of variability is important for both the 
normative profile of development and 
disorders

• Structure of the system and the environment 
can affect the sequence of transitions made 
during learning

• For the individual, progressive transitions and 
regressions are important in model’s learning

End of Talk

Thank you for listening
Further Details

Simulation Details

• Epoch monitoring points:

[10, 20, 25, 30, 35, 40, 50, 60 70, 80, 90, 100]

• LRs: 1HL = 0.01   2HL = 0.02   3HL = 0.2

• Multi-layer simulations run with same lr

– 3HL: 200 epochs (R4 at 140 epochs+)

– 4HL: 1000 epochs (R4 at 650 epochs+)

Case Study: Learning Profile
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