CONTENTS

1. GENERAL INFORMATION ... 1
 Academic Calendar ... 3

2. PROGRAMME STRUCTURE .. 5
 2.1 Assessment .. 5
 2.2 Degree Classification .. 5
 2.3 Results ... 5
 2.4 Failure and Re-assessment of a Module 6

3. MSC FINANCIAL ENGINEERING COURSE UNITS 7
 3.1 September Quantitative Techniques for MSc (Statistics) 7
 3.2 Mathematical Methods ... 7
 3.3 Financial Econometrics I ... 9
 3.4 Financial Econometrics II ... 9
 3.5 Pricing ... 11
 3.6a Option: Risk Management ... 12
 3.6b Option: Commodities and Commodity Derivatives 15
 3.7 Dissertation .. 17

4. TIMETABLES .. 18
Message from the programme director:

We have decided to make some changes in the MSc this year. The primary reason for this is for the good of our students, since many found Econometrics too difficult and abstract in their first year, hence its move to the second year, whilst Pricing will now become a first year course. I shall explain the changes more fully during my initial Methods and Pricing lectures in October. Therefore part-time students will begin Methods and Pricing this October (with me).

1. Brad Baxter.
1. General Information
Welcome to the Department of Economics, Mathematics and Statistics. This Handbook aims to provide a quick guide to your academic programme. It also tells you how to locate more detailed and current information on the Department website (www.ems.bbk.ac.uk) and College website (www.bbk.ac.uk)
Full College regulations are available here: http://www.bbk.ac.uk/reg/regs/cas

People, services and how to reach them
The Programme Administrator handles all administrative aspects of the Programme, and is usually the first point of contact for students.

Programme Administrator for MSc Financial Engineering
Naomi Mintrum
Room: 720 Malet St
Tel: 020 7631 6429
Fax: 020 7631 6416
Email: n.mintrum@bbk.ac.uk

Course Lecturers
The course lecturers are the first point of contact for academic issues. The easiest way to initiate contact with your lecturers is via email. The email address of faculty members is initial.surname@bbk.ac.uk.

Programme Director
The Programme Director is in charge of the overall academic content and structure of the Programme. It is important to keep us informed of any relevant problems, including health, personal or work issues. It is especially important that you inform your Programme Director if you are considering withdrawing from the programme.
Programme Director: Brad Baxter b.baxter@bbk.ac.uk

Department Computer Representative
For any queries relating to your College computer account and other IT services, contact:
Nigel Foster
Room 759
Tel: 020 7631 6402
Email: n.foster@bbk.ac.uk

Department Student Help Desk
The Help Desk is run by the Department computing staff, Nigel Foster (room 759), tel 020 7631 6402, and Awuku Danso (room 758), tel 020 7631 6433.
Email: helpdesk@ems.bbk.ac.uk at the following times:
Term: Mon – Fri 16.00 – 18.00
Vacations: Mon – Thurs 16.00 – 18.00
ITS Reception Help Desk
Ground floor, Main Building
Tel.: 020 7631 6543.

Term: Mon – Fri 09.00 – 20.00
Vacations: Mon – Fri 09.00 – 18.00

Workstation Rooms
The Department has its own Workstation Room, Room 742, for specialized software.
For more general software, ITS run the following Workstation Rooms:
- Rooms 10 and 11, 43 Gordon Square;
- Rooms 402, 412, 413, 422, 423 and 536 Main Building;
- Open access from library

Learning Co-ordinator
Eva Szatmari
Office: Room 715a, Malet Street Building
Tel: 0207 631 6254
email: e.szatmari@bbk.ac.uk

Eva's role is to support students in their studies. She is available 4 days a week to meet with students and to discuss their needs. She can offer advice on a variety of maths skills, including:
- Pre-Algebra
- Formulae
- Equations
- Functions
- Basic calculus
- Basic statistics
- Basic data analysis

Frequently Asked Questions by Students
Please use the following link if you require further information about the different services offered at Birkbeck, as well as personal tutor information and course related administrative questions our students may have while studying at Birkbeck: http://www.ems.bbk.ac.uk/for_students/

Academic Calendar

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>September Quantitative Techniques for MSc</td>
<td>5 September 2016</td>
</tr>
<tr>
<td>Examination for Quantitative Techniques</td>
<td>Statistics Test 1 15 September 2016 (evening)</td>
</tr>
<tr>
<td></td>
<td>Mathematics Test 1 15 September 2016</td>
</tr>
<tr>
<td></td>
<td>(note these are same date: we will stagger time of test)</td>
</tr>
<tr>
<td>Event</td>
<td>Date</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Statistics Test 2</td>
<td>28 September (evening)</td>
</tr>
<tr>
<td>Mathematics Test 2</td>
<td>29 September (evening)</td>
</tr>
<tr>
<td>Dissertation proposal deadline</td>
<td>End of Week 6 of Spring term</td>
</tr>
<tr>
<td>Examinations</td>
<td>May - June 2017</td>
</tr>
<tr>
<td>Dissertation submission deadline</td>
<td>September 2017 (tbc)</td>
</tr>
</tbody>
</table>

Term Dates 2015 – 2016

<table>
<thead>
<tr>
<th>Term</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>Pre-term Quantitative Techniques</td>
</tr>
<tr>
<td>Autumn term</td>
<td>3 October to 16 December 2016</td>
</tr>
<tr>
<td>Spring term</td>
<td>9 January to 24 March 2017</td>
</tr>
<tr>
<td>Summer term</td>
<td>24 April to 7 July 2017</td>
</tr>
</tbody>
</table>

The College is closed on specified holidays over Christmas and Easter and on Bank Holidays. For a complete listing, and details of service availability on these holidays, see the College Calendar at www.bbk.ac.uk/about-us/term-dates
2. Programme Structure

Throughout, the material is approached in a rigorous fashion. Having completed the programme, students have a solid grasp of a broad sweep of advanced applicable finance and are ready to work as quantitative analysts in financial markets or to study for a doctorate. Lectures are held between 6 and 9 in the evening. In addition to lectures, some courses involve classes. These provide opportunities to review material related to the lectures and to discuss solutions to problem sets. For full-time students, classes are sometimes held in the afternoon. Classes for part-time students are always in the evening.

The structure of the degree is as follows. Students complete three compulsory courses and one option course, which are assessed through examinations in June. For some courses, problem sets also count towards the final grade. Full-time (FT) students are normally expected to complete the programme in one academic year, while part-time (PT) students normally take two years. Following their successful completion of four courses, students also complete a dissertation on a subject related to material covered in the programme. This dissertation has the same weight as one course in the final evaluation of a student’s performance.

2.1 Assessment

Performance in individual courses depends on a combination of end-of-year exams and continuous assessment: the latter may take the form of in-class tests and or take-home assignments.

1. Quantitative Techniques September examination
2. Mathematical Methods June exam (80% + coursework (20%)
3. Financial Econometrics I (Option) June exam
4. Financial Econometrics II (Option) June exam
5. Pricing June exam (80%) + coursework (20%)
6a Risk Management (Option) June exam (80%) + coursework (20%)
6b Commodities (Option) June exam (80%) + coursework (20%)
7 Dissertation Entirely coursework

For further information about the Exam and Assessment procedures at Birkbeck, please use the following link:
http://www.bbk.ac.uk/mybirkbeck/services/administration/assessment

2.2 Degree Classification

The College will classify its awards as one of the following: Distinction, Merit or a Pass and is in accordance with Common Awards Scheme (CAS) requirements. Information about the degree classification can be found at:
www.bbk.ac.uk/reg/regs/cas/conferment/postgradtaught

2.3 Results

The Examiners usually meet in July to provide an indication of the likely degree classification (that is Distinction, Merit, Pass or Fail), conditional on successful completion of the Dissertation. University Regulations do not allow us to tell you the marks, or even give any indication of them. The marks are notified routinely by the University in November/December. Information about the publication of results can be found at:
http://www.bbk.ac.uk/mybirkbeck/services/administration/assessment/exams/results
2.4 Failure and Re-assessment of a Module

Postgraduate candidates will normally be offered two attempts at passing a module (the original attempt plus one further attempt which will either be a re-assessment or a retake). Where a student fails a module, examination boards have different routes open to them to allow the student further attempts to pass. Please see a brief list below:

- **Re-take** for modules where a student obtained less than 40% at first attempt. In this case the student will be required to re-enrol on the module, attend lectures and classes and retake all the assessment associated with that module. **Students re-taking a module will be charged for that module.**

- **Re-assessment** for modules where a student obtained between 40% and 49% on the first attempt. The student is not required to attend lectures and will only need to re-attempt any failed element of that module (in most cases, the examination). **Please note that re-assessment marks will be capped at a pass (50%) from 2015/6 onwards as a change to College Policy.**

Further information about Alternative Assessment, Re-assessment & Re-takes, and a Compensated Fail can be found in the ‘Common Award Scheme Regulations’ document located on the My Birkbeck website: http://www.bbk.ac.uk/mybirkbeck/services/rules/casregs.pdf

Please note students cannot re-sit in order to improve a pass mark. The earliest you can take a re-assessment is the next academic year, in June. Courses often evolve from one year to the next, with changes in content and emphasis and it is your responsibility to keep track of any variations in the syllabus. If you require further guidance about re-assessments, please contact your Programme Director.
3. MSc Financial Engineering Course Units

3.1 September Quantitative Techniques for MSc (Statistics)

Full-time and Part-time Year 1

Lecturer: Ali Tasiran, Sotiris Migkos

Course Aims

This pre-sessional course run through September provides a review of the basic statistical techniques needed for the MSc programme. Some introductory lectures in finance provide a context for the use of these techniques.

Statistics

Probability and Distribution Theories
1. Probability
2. Random variables and probability distributions
3. Expectations and moments
4. Some univariate distributions
5. Multivariate distributions
6. Functions of random variables

Statistical Inference
7. Sampling
8. Large sample theory
9. Point estimation
10. Parametric interval estimation
11. Tests of statistical hypotheses

Teaching arrangements and assessment

Lectures take place in September, on Mondays, Tuesdays and Thursdays. We begin with a quick review of linear algebra and then carry on with statistical techniques. You will be expected to solve exercises in your own time.

Performance in this course is assessed through a two-hour written examination which you MUST pass. No resits are held.

Textbooks

Lecture notes are provided but are not a substitute for a textbook. We do not recommend any particular text, but in the past students have found the following useful.

3.2 Mathematical Methods
EMMS011S7
Full-time and Part-time 1
Autumn and Spring Terms, over 20 weeks
Lecturer: Brad Baxter

Aims
- To introduce students to the main mathematical and numerical techniques used in quantitative finance. The course is divided into three sub-modules and illustrated by examples drawn from this subject area.
- [MSc Financial Engineering only] To become acquainted with suitable languages and computer packages for financial applications (C++ and Matlab).

Objectives
 a) Stochastic Processes for Finance
- To understand the basic concepts of stochastic calculus, in particular Brownian motion and stochastic integrals.
- To understand Ito calculus and its applications to stochastic differential equations (SDEs).
- To understand the numerical solution of an SDE
- To appreciate the connections between probability theory and partial differential equations via the Feynman-Kac formula.

 b) Theoretical Numerical Methods for Finance
- To solve SDEs using Monte Carlo simulation.
- To understand the fundamental algorithms for the numerical solution of parabolic partial differential equations (PDEs).
- To understand the binomial method for option pricing as a finite difference method, particularly its disadvantages.
- To appreciate the importance of stability in numerical algorithms for PDEs.
- To understand numerical methods for the solution of nonlinear equations and some basic optimization techniques.
- To know the basics of relevant numerical methods, eg data fitting.
- To illustrate the above by examples and exercises in Matlab.

 c) Programming in C++ [MSc Financial Engineering only]
- To understand the language fundamentals of C and C++.
- To use arrays, dynamic memory allocation and data input/output.
- To understand and construct classes, illustrated by classes for complex numbers and matrix algebra.
- To use numerical libraries.

Course Assessment
Stochastic Processes (a) and Theoretical Numerical Methods (b) will be assessed via coursework (20%) and a three-hour examination in June (80%). Students are recommended to use their knowledge of Matlab and C++ in their final-year dissertation, where appropriate.

Textbooks
The courses will be based on extensive lecture notes.
3.3 Financial Econometrics I

Course number: BUEM045H7
Autumn term
Full-Time and Part-Time Year 2
Credits: 15
Lecturer: Ron Smith

Course Aims and Objectives

This course provides an introduction to theoretical and applied econometrics with a focus on time-series methods. The course aims to help you in actually doing applied econometrics, with applicability to finance. This involves combining theory, statistical methods and an understanding of the data with the ability to use the appropriate software and interpret the output.

At the end of the course students will be able to demonstrate that they can:

• derive standard estimators (OLS, ML, GMM) and understand their properties;
• explain the basis for standard exact and asymptotic tests and use them in practice;
• develop and analyse basic univariate and multivariate time-series models for integrated and cointegrated data and know how to choose between alternative models;
• use standard econometrics packages and interpret their output;
• read, understand and explain empirical articles in the literature of the sort that appear in the Economic Journal or American Economic Review;
• conduct and report on an independent piece of empirical research that uses advanced econometric techniques.

Assessment

The course is assessed through a two-hour test.

Indicative Reading

A course booklet will be distributed, which will contain a fuller reading list.

• Marno Verbeek's A guide to modern econometrics, 3rd edition, Wiley 2008 covers most of the material in the course at a similar level.

• P. Kennedy, A Guide to Econometrics, 6th edition Blackwell 2008, is not a text-book, but provides an excellent explanation of what econometrics is about.

3.4 Financial Econometrics II

Course number: BUEM050H7
Spring term
Full-Time and Part-Time Year 2
Credits: 15
Lecturer: Roald Versteeg

Course Aims and Objectives

This course builds on Financial Econometrics I. The first half of the course will look at a number of advanced econometric techniques and the second half of the course at a number of econometric applications in finance. In addition students will be independently working on an econometrics project.

Outline of Topics

Advanced Time Series Analysis
• Time Varying Volatility: GARCH
• Limited Dependent Variables
• GMM

Applications to Financial Time Series
• Event Study Analysis
• Asset Pricing
• Predictability of Asset Returns

Course Assessment

• 2 hour examination in June (80%)
• An econometric project (20%), parts of which may be used for the MSc dissertation.

Recommended Texts

3.5 Pricing
EMMS014S7

Full-time and Part-time 1
Autumn and Spring Terms, over 20 weeks
Lecturer: Brad Baxter and Hélyette Geman

Aims
To understand and be able to implement contingent claims (plain-vanilla and complex options in particular) and bond and other interest rate derivatives pricing by a variety of approaches: binomial, PDE and martingale pricing methods.

Objectives
• To develop problem-solving abilities to value derivative securities.
• To become acquainted with standard derivative and bond pricing models.
• To understand equivalent martingale measures and their role in option pricing.
• To understand valuation techniques based on change of numeraire.
• To understand the concepts of complete and incomplete markets.
• To apply the martingale approach to a variety of contexts: option pricing, term structure models for both defaultable and non-defaultable bonds.
• To understand the main types of single-name and structured credit derivatives and their pricing methodology, including its weaknesses.

Course Assessment
Coursework counts for 20% and a three-hour examination in June for 80%.

Textbooks
The courses will be based on fairly extensive lecture notes. Detailed reading lists will be provided during term.
3.6a Option: Risk Management

Part 1: Market Risk Management

Course number: BUEM053H7
Full-Time and Part-Time Year 2
Autumn
Credits: 15
Lecturers: Simon Hubbert

Course Aims and Objectives

To demonstrate an understanding of the different reasons for (and approaches to) measuring market risk. To gain a fundamental knowledge of the mathematical and statistical theory behind the subject and to be able to apply this to solve real-world problems.

On successful completion of this module a student will be expected to be able to:

- measure financial losses;
- demonstrate a sound theoretical knowledge of Value at Risk (VaR) and Tail Value at Risk (TVaR);
- compute VaR and TVaR (under certain distributional assumptions) for a given portfolio of risky assets;
- employ statistical tools to examine the stylized facts of asset returns;
- build and use risk models featuring jumps and stochastic volatility;
- demonstrate sound knowledge of the GARCH family of risk models and its applications;
- compute VaR for derivative portfolios;
- use extreme value theory applied to VaR and TVaR calculations;
- measure risk using simulation methods;
- statistically evaluate a given risk model using back-testing techniques.

Outline of topics

The course will focus on the following topics:

- Properties of financial time series
- Value at Risk and related measures for portfolios of standard assets
- Risk factor models – strengths and weaknesses
• Value at Risk for derivative portfolios
• Time series analysis for risk managers
• Extreme Value Theory and its applications in finance.

Course Assessment

The final grade is determined through a two-hour exam in June and a take-home exercise in the Christmas vacation

Recommended Texts

The core literature of the module consists of:

Part 2: Credit Risk Management

Course number: BUEN501H7
Full-Time and Part-Time Year 2
Spring Term
Credits: 15
Lecturers: Raymond Brummelhuis

Course Aims and Objectives

A gross lack of understanding of the dangers of too much exposure to credit risk caused the recent and on-going financial crisis. As a result, the future of financial risk management will place a high weight upon the accurate measurement and understanding of credit risk. This module is designed to deliver the essential mathematical and statistical methods underpinning the management of credit risk.

On successful completion of this module a student will be expected to be able to:

• demonstrate a sound knowledge of the essential mathematics of credit risk;
• demonstrate an excellent working knowledge of the most commonly used models in credit risk management;
• be able to price simple credit derivatives;
• demonstrate a sound understanding of the most actively used credit products, such as credit default swaps (CDS) and credit valuation adjustments (CVA);

Outline of topics:

The course will focus on the following topics:

• Essential Mathematics of Credit Risk – Stochastic processes and advanced probability theory;
• Well-known approaches to Credit Risk including the structural and reduced form models;
• Credit Default Swaps and Credit Value Adjustments.

Course Assessment:

2 hour examination in June (80% of the total marks) and course-work (20%).

Recommended Texts:

Aims

This course provides an analysis of commodity markets, their specificities and how they differ from bond and stock markets. The students will become familiar with the Exchanges, the instruments and the hedging and trading strategies. The different sub-classes of commodities are analysed and discussed: metals, agriculturals, shipping. The energy class (crude oil, coal and natural gas, electricity) will be analysed in detail. The course provides a thorough overview of recent developments in energy and commodities modelling, along with the necessary computational methods. Particular attention will be brought to the economic fundamentals, including inventory, reserves and forward curve).

Objectives

At the end of this course, students will be able to demonstrate that they can:
- understand the specificities of commodities as a new asset class;
- recognise the unique features of electricity markets (natural gas, hydro, nuclear and emissions);
- understand mathematical and statistical techniques;
- understand some of the important financial concepts underlying the theory of energy instruments as well as other commodities;
- apply econometric models to commodity spot and forward prices in order, in particular, to build a consistent model for a multi-commodity
- use trees and Monte-Carlo methods for the pricing of volumetric options (financial or real) that are specific to commodities markets

Course Assessment

Coursework counts for 20% and the June exam for 80%

Recommended Reading

Lecture Topics

The first paper of the course will be dedicated to the presentation of

- commodity spot markets
- major Exchanges
- liquid indexes
- most traded instruments

The theory of storage will relate inventory to the shape of the forward curve and spot price volatility.

The second part of the course will present

- the oil and refined products market
- Natural gas and LNG
- the coal market
- the shipping market and freight indices

The third part of the course will describe commodity risk management using forwards/Futures and options as well the unique challenges posed by the existence of spikes and structural breaks in price trajectories.

Seasonality, both in a deterministic and stochastic form, will be discussed in the context of agricultural and energy commodities.

Value at Risk and stress testing will be presented for commodity portfolios.

The fourth part of the course will be devoted to

- spot price modeling
- forward curve modeling (including through a PCA approach)
- option pricing models for commodity markets: Black, Margrabe, spread options
- inclusion of stochastic volatility
- gas storage and physical assets valuation

The last part will cover the unique features of electricity markets, the role of supply and demand in price formation and construction of the power stack function.

Emissions and carbon markets will be presented and discussed.
3.7 Dissertation
EMMS015D7
Full-time and Part-time 2
Spring and Summer term

Aims
The Dissertation requires students to apply the techniques and knowledge acquired from the taught courses. Students should:

- show that they have a good knowledge of the relevant literature on their chosen topic;
- identify an interesting question associated with that topic and analyse this question either in a new way or with new data;
- demonstrate they have a good grasp of techniques (statistical, numerical or theoretical) relevant for analysing the question;
- present the results of their analysis in a clear and convincing manner, within the word limit (6000 words)

Student must choose a suitable topic. Any subject that relates to material covered in the Programme is admissible, but it is generally sensible to stick to projects which contain some substantial element of statistical or numerical analysis. Theoretical projects are difficult although occasionally students have produced good work of this type. Purely institutional topics are not permitted.

On data, it is important not to be too ambitious. Often students spend inordinate amounts of time collecting large datasets and then find they have no time to perform analysis. Interesting analysis motivated by some genuine, substantive question earns high marks. Whatever is done, it is important that students time their work realistically. Aiming to complete the report in the last fortnight before the deadline is a recipe for trouble. If you are unfamiliar with econometric packages, everything takes longer than you expect. A good source of financial data is Datastream, which can be accessed using a computer in the Library. The principal databases cover equities, bonds, company accounts, economic series, international market indices, interest and exchange rates and financial and commodity futures and traded options

Schedule
Students must submit a one-page proposal by the end of week 6 in the Spring Term. This proposal should state the basic idea of the project, what data and computing facilities will be required and whether or not these are known to be available. Students are encouraged to contact lecturers in advance to discuss and refine their proposal.

The Department will then allocate a supervisor to guide your research. The choice of a supervisor depends on availability and interests of faculty members. Students should establish contact with their supervisors at an early stage, whether in person or via email to discuss supervision arrangements. An initial meeting to obtain advice on data, techniques and overall direction is valuable. Students should maintain contact with their supervisor (say by submitting a draft for comments and feedback). Ideally, this process should be completed by June.

July is for completing the research, and for writing up the Dissertation. Note that many supervisors are away in July and August, so communication via email alone may be possible. The final submission date is usually the last Friday in August.
1. Timetables

September Quantitative Techniques for MSc

TIMETABLES FOR SEPTEMBER 2016

MSc Quantitative Techniques
MSc Economics, MSc Financial Economics, MSc Finance with Pathways, MSc Financial Risk Management, MSc Financial Engineering

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures begins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Sep 2016</td>
<td>2-5 pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics (Kapur)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room 415</td>
<td>6-8.30 pm</td>
<td>Statistics (Tasiran)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room B33</td>
<td>2-5 pm</td>
<td>Mathematics (Kapur)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room 415</td>
<td>6-8.30 pm</td>
<td>Statistics (Tasiran)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room B33</td>
<td>2-5 pm</td>
<td>Mathematics (Kapur)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room 415</td>
<td>6-8.30 pm</td>
<td>Statistics (Tasiran)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room B33</td>
<td>2-5 pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room 415</td>
<td>6-8.30 pm</td>
<td>Statistics (Tasiran)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room B33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 2</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Sep 2016</td>
<td>2-5 pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics (Kapur)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room 415</td>
<td>6-8.30 pm</td>
<td>Statistics (Tasiran)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room B33</td>
<td>2-5 pm</td>
<td>Mathematics (Kapur)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room 415</td>
<td>6-8.30 pm</td>
<td>Statistics (Tasiran)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room B33</td>
<td>2-5 pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room 415</td>
<td>6-8.30 pm</td>
<td>Statistics TEST (Kapur)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room B33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 3</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Sep 2016</td>
<td>2-5 pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics (Nikandrova)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room 415</td>
<td>6-8.30 pm</td>
<td>Statistics (Psaradakis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room B33</td>
<td>2-5 pm</td>
<td>Mathematics (Nikandrova)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room 415</td>
<td>6-8.30 pm</td>
<td>Statistics (Psaradakis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room B33</td>
<td>2-5 pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room 415</td>
<td>6-8.30 pm</td>
<td>Statistics (Psaradakis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room B33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 4</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 Sep 2016</td>
<td>2-5 pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics (Nikandrova)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room 415</td>
<td>6-8.30 pm</td>
<td>Statistics (Psaradakis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room B33</td>
<td>2-5 pm</td>
<td>Mathematics (Nikandrova)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room 415</td>
<td>6-8.30 pm</td>
<td>Statistics (Psaradakis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room B33</td>
<td>6-8pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistics TEST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room B33</td>
<td>6-8pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics TEST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room B33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18
TIMETABLES FOR SEPTEMBER 2016

MSc Quantitative Techniques
MSc Economics, MSc Financial Economics, MSc Finance with Pathways, MSc Financial Risk Management, MSc Financial Engineering

PART-TIME YEAR 1 STUDENTS

(All rooms are in the main building, Malet Street – room numbers to be confirmed)

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>6-8.30 pm</td>
<td>6-8.30 pm</td>
<td></td>
<td>6-8.30 pm</td>
</tr>
<tr>
<td>Lectures begins</td>
<td>Mathematics (Kapur)</td>
<td>Mathematics (Kapur)</td>
<td></td>
<td>Mathematics (Kapur)</td>
</tr>
<tr>
<td>5 Sep 2016</td>
<td>Room B20</td>
<td>Room B20</td>
<td></td>
<td>Room B20</td>
</tr>
<tr>
<td>Week 2</td>
<td>6-8.30 pm</td>
<td>6-8.30 pm</td>
<td></td>
<td>6-8 pm</td>
</tr>
<tr>
<td>Starts</td>
<td>Mathematics (Kapur)</td>
<td>Mathematics (Kapur)</td>
<td></td>
<td>Mathematics TEST</td>
</tr>
<tr>
<td>12 Sept 2016</td>
<td>Room B20</td>
<td>Room B20</td>
<td></td>
<td>(Kapur) Room B20</td>
</tr>
<tr>
<td>Week 3</td>
<td>6-8.30 pm</td>
<td>6-8.30 pm</td>
<td></td>
<td>6-8.30 pm</td>
</tr>
<tr>
<td>Starts</td>
<td>Mathematics (Nikandrova)</td>
<td>Mathematics (Nikandrova)</td>
<td></td>
<td>Mathematics (Nikandrova)</td>
</tr>
<tr>
<td>19 Sept 2016</td>
<td>Room B20</td>
<td>Room B20</td>
<td></td>
<td>Room B20</td>
</tr>
<tr>
<td>Week 4</td>
<td>6-8.30 pm</td>
<td>6-8.30 pm</td>
<td></td>
<td>6-8pm</td>
</tr>
<tr>
<td>Starts</td>
<td>Mathematics (Nikandrova)</td>
<td>Mathematics (Nikandrova)</td>
<td></td>
<td>Mathematics TEST</td>
</tr>
<tr>
<td>26 Sept 2016</td>
<td>Room B20</td>
<td>Room B20</td>
<td></td>
<td>Room B33</td>
</tr>
</tbody>
</table>

To view your course timetable, please use the following link:
www.bbk.ac.uk/ems/for_students/msc_finEng
Employability

Careers and Employability Service

We provide comprehensive careers, recruitment and employability advice, events and information services for our students, both online and face-to-face at our dedicated support space on the Birkbeck campus in Bloomsbury. These include: speaking to a careers advisor; panel discussions with employers, Birkbeck alumni and careers consultants; workshops and events on finding work, CV and application writing, and preparing for interviews; and online social media support.

We also work closely with Birkbeck Talent, our in-house recruitment service, to provide bespoke support for student pursuing employment and internship opportunities.

To find out more, visit bbk.ac.uk/careers

Birkbeck Talent: a dedicated in-house recruitment service for students

Birkbeck Talent is a professional recruitment service aimed exclusively at assisting Birkbeck students to find work whilst studying and after graduation. We work with London’s top employers to offer innovative internships, prestigious job vacancies and exciting graduate opportunities.

To find out more, visit bbk.ac.uk/talent

Business Engagement Team

The School of Business, Economics and Informatics has a dedicated Business Engagement team where you can take advantage of extra support - in addition to what is offered by Birkbeck Talent and the Careers and Employability Service. Based in Malet Street, the team deliver a range of activities to support you in your career aspirations including:

Mentoring Pathways

Mentoring Pathways pairs successful applicants with industry professionals for individual advice and guidance. There are approximately 100 places available for final year under-graduates and post-graduate students. We have partnerships with a number of employers including Credit Suisse, PwC, University London College Hospital, Enfield Council, Hounslow Council and work alongside Birkbeck alumni, who are employed in a range of exciting and dynamic businesses.

Enterprise Pathways

Whether you are setting out in your journey as an entrepreneur or have already established a thriving business, we offer a range of initiatives to support you. These include workshops, access to digital resources, opportunities for networking, competitions and coaching.

Events

An events schedule can be found overleaf and our events will also be advertised through emails, the Business Engagement student newsletter and social media.
These events will help you to find out more about industry sectors, entrepreneurs and professional bodies.

To accommodate for busy lives and responsibilities at work, many of these events are filmed and later uploaded to our bespoke on demand video service, BEInspired.

Please visit our website www.bbk.ac.uk/business/business-services for resources and information about all of these initiatives.

Insiders’ Guides

We would like to take a small number of students to visit workplaces and ask questions about the culture, the roles and career progression. If your employer would like to participate, or you have a particular industry or sector that you would like included as part of this series, please contact us at developus@bbk.ac.uk for further details. Look out for opportunities to be part of the student group via our newsletter and social media.

You can also follow BEI on social media for information and conversations:

- Twitter: @BirkbeckBEI
- Facebook: BirkbeckBEI
Get Ahead: Stay Ahead

www.bbk.ac.uk/ahead

Helping you get the best possible start to your course

At Birkbeck we want to make sure you get all the help you need to get your studies off to a great start and to provide you with support during your course. On the Get Ahead: Stay Ahead website you can access a range of online resources to help you:

* consider how you can achieve your goals
* find out what studying at Birkbeck is like
* improve your study skills and succeed on your course

The online materials are interactive tutorials that are free to use and you can work through them at your own pace.

www.bbk.ac.uk/ahead