CONTENTS

1. **GENERAL INFORMATION** ... 1
 People, services and how to reach them .. 1
 Academic Calendar ... 3

2. **PROGRAMME STRUCTURE** ... 4
 2.1 Assessment .. 4
 2.2 Degree Classification ... 4
 2.3 Results ... 4
 2.4 Failure and Re-assessment of a Module 5

3. **MSC FINANCIAL ENGINEERING COURSE UNITS** 6
 3.1 Pre-sessional Quantitative Techniques (Statistics) 6
 3.2 Pre-sessional Quantitative Techniques (Finance) 7
 3.3 Mathematical Methods .. 8
 3.4 Financial Econometrics .. 9
 3.5 Pricing .. 10
 3.6 Option: Risk Management ... 11
 3.6 Option: Commodities and Commodity Derivatives 14
 3.7 Dissertation ... 16

4. **PROVISIONAL TIMETABLES** .. 17
1. General Information

Welcome to the Department of Economics, Mathematics and Statistics. This Handbook aims to provide a quick guide to your academic programme. It also tells you how to locate more detailed and current information on the Department website (www.ems.bbk.ac.uk) and College website (www.bbk.ac.uk)

Full College regulations are available here: http://www.bbk.ac.uk/reg/regs/cas

People, services and how to reach them

The Programme Administrator handles all administrative aspects of the Programme, and is usually the first point of contact for students.

Programme Administrator for MSc Financial Engineering
Naomi Mintrum
Room: 720 Malet St
Tel: 020 7631 6429
Fax: 020 7631 6416
Email: n.mitrum@bbk.ac.uk

Course Lecturers

The course lecturers are the first point of contact for academic issues. The easiest way to initiate contact with your lecturers is via email. The email address of faculty members is initial.surname@bbk.ac.uk.

Programme Director

The Programme Director is in charge of the overall academic content and structure of the Programme. It is important to keep us informed of any relevant problems, including health, personal or work issues. It is especially important that you inform your Programme Director if you are considering withdrawing from the programme.

Programme Director: Brad Baxter b.baxter@bbk.ac.uk

Department Computer Representative

For any queries relating to your College computer account and other IT services, contact:
Nigel Foster
Room 759
Tel: 020 7631 6402
Email: n.foster@bbk.ac.uk

Department Student Help Desk

The Help Desk is run by the Department computing staff, Nigel Foster (room 759), tel 020 7631 6402, and Awuku Danso (room 758), tel 020 7631 6433.

Email: helpdesk@ems.bbk.ac.uk at the following times:
Term: Mon – Fri 16.00 – 18.00
Vacations: Mon – Thurs 16.00 – 18.00
ITS Reception Help Desk

Ground floor, Main Building
Tel.: 020 7631 6543.

Term: Mon – Fri 09.00 – 20.00
Vacations: Mon – Fri 09.00 – 18.00

Workstation Rooms

The Department has its own Workstation Room, Room 742, for specialized software.

For more general software, ITS run the following Workstation Rooms:

- Rooms 10 and 11, 43 Gordon Square;
- Rooms 402, 412, 413, 422, 423 and 536 Main Building;
- Open access from library

Learning Co-ordinator
Eva Szatmari
Office: Room 715a, Malet Street Building
Tel: 0207 631 6254
email: e.szatmari@bbk.ac.uk

Eva's role is to support students in their studies. She is available 4 days a week to meet with students and to discuss their needs. She can offer advice on a variety of maths skills, including:

- Pre-Algebra
- Formulae
- Equations
- Functions
- Basic calculus
- Basic statistics
- Basic data analysis

Frequently Asked Questions by Students

Please use the following link if you require further information about the different services offered at Birkbeck, as well as personal tutor information and course related administrative questions our students may have while studying at Birkbeck: http://www.ems.bbk.ac.uk/for_students/
Academic Calendar

<table>
<thead>
<tr>
<th>Pre-sessional courses</th>
<th>1 September 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination for Quantitative Techniques</td>
<td>Statistics Test 1 Thu 11 September 2014 (evening)</td>
</tr>
<tr>
<td></td>
<td>Mathematics Test 1 Thu 11 September 2014</td>
</tr>
<tr>
<td></td>
<td>(note these are same date: we will stagger time of test)</td>
</tr>
<tr>
<td></td>
<td>Statistics Test 2 Wed, 24 September, 6-7 pm</td>
</tr>
<tr>
<td></td>
<td>Introduction to Finance Wed 24 September, 7.15-8.15 pm</td>
</tr>
<tr>
<td></td>
<td>Mathematics Test 2 Thu 25 Sep, 6-7 pm.</td>
</tr>
<tr>
<td>Dissertation proposal deadline</td>
<td>End of Week 6 of Spring term</td>
</tr>
<tr>
<td>Examinations</td>
<td>May - June 2015</td>
</tr>
<tr>
<td>Dissertation submission deadline</td>
<td>August 2015 (tbc)</td>
</tr>
</tbody>
</table>

Term Dates 2014 – 2015

<table>
<thead>
<tr>
<th>September</th>
<th>Pre-term Quantitative Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn term</td>
<td>29 September to 12 December 2014</td>
</tr>
<tr>
<td>Spring term</td>
<td>5 January to 20 March 2015</td>
</tr>
<tr>
<td>Summer term</td>
<td>20 April to 3 July 2015</td>
</tr>
</tbody>
</table>

The College is closed on specified holidays over Christmas and Easter and on Bank Holidays. For a complete listing, and details of service availability on these holidays, see the College Calendar at www.bbk.ac.uk/about-us/term-dates
2. Programme Structure

Throughout, the material is approached in a rigorous fashion. Having completed the programme, students have a solid grasp of a broad sweep of advanced applicable finance and are ready to work as quantitative analysts in financial markets or to study for a doctorate. Lectures are held between 6 and 9 in the evening. In addition to lectures, some courses involve classes. These provide opportunities to review material related to the lectures and to discuss solutions to problem sets. For full-time students, classes are sometimes held in the afternoon. Classes for part-time students are always in the evening.

The structure of the degree is as follows. Students complete three compulsory courses and one option course, which are assessed through examinations in June. For some courses, problem sets also count towards the final grade. Full-time (FT) students are normally expected to complete the programme in one academic year, while part-time (PT) students normally take two years. Following their successful completion of four courses, students also complete a dissertation on a subject related to material covered in the programme. This dissertation has the same weight as one course in the final evaluation of a student’s performance.

2.1 Assessment

Performance in individual courses depends on a combination of end-of-year exams and continuous assessment: the latter may take the form of in-class tests and or take-home assignments.

1. Quantitative Techniques September examination
2. Mathematical Methods June exam (80% + coursework (20%)
3. Financial Econometrics June exam
4. Pricing June exam (80%) + coursework (20%)
5a Risk Management (Option) June exam (80%) + coursework (20%)
5b Commodities (Option) June exam (80%) + coursework (20%)
6 Dissertation Entirely coursework

For further information about the Exam and Assessment procedures at Birkbeck, please use the following link:
http://www.bbk.ac.uk/mybirkbeck/services/administration/assessment

2.2 Degree Classification

The College will classify its awards as one of the following: Distinction, Merit or a Pass and is in accordance with Common Awards Scheme (CAS) requirements. Information about the degree classification can be found at: www.bbk.ac.uk/reg/regs/cas/conferment/postgradtaught

2.3 Results

The Examiners usually meet in July to provide an indication of the likely degree classification (that is Distinction, Merit, Pass or Fail), conditional on successful completion of the Dissertation. University Regulations do not allow us to tell you the marks, or even give any indication of them. The marks are notified routinely by the University in November/December. Information about the publication of results can be found at: http://www.bbk.ac.uk/mybirkbeck/services/administration/assessment/exams/results
2.4 Failure and Re-assessment of a Module

Postgraduate candidates will normally be offered two attempts at passing a module (the original attempt plus one further attempt which will either be a re-assessment or a retake). Where a student fails a module, examination boards have different routes open to them to allow the student further attempts to pass. Please see a brief list below:

- **Re-take** for modules where a student obtained less than 40% at first attempt. In this case the student will be required to re-enrol on the module, attend lectures and classes and retake all the assessment associated with that module. **Students re-take a module will be charged for that module.**

- **Re-assessment** for modules where a student obtained between 40% and 49% on the first attempt. The student is not required to attend lectures and will only need to re-attempt any failed element of that module (in most cases, the examination). **Please note that re-assessment marks will be capped at a pass (50%) from 2015/6 onwards as a change to College Policy.**

Further information about Alternative Assessment, Re-assessment & Re-takes, and a Compensated Fail can be found in the ‘Common Award Scheme Regulations’ document located on the My Birkbeck website: http://www.bbk.ac.uk/mybirkbeck/services/rules/casregs.pdf

Please note students cannot re-sit in order to improve a pass mark. The earliest you can take a re-assessment is the next academic year, in June. Courses often evolve from one year to the next, with changes in content and emphasis and it is your responsibility to keep track of any variations in the syllabus. If you require further guidance about re-assessments, please contact your Programme Director.
3. MSc Financial Engineering Course Units

3.1 Pre-sessional Quantitative Techniques (Statistics)

Full-time and Part-time Year 1
Lecturer: Ali Tasiran, Roald Versteeg

Course Aims
This pre-sessional course run through September provides a review of the basic statistical techniques needed for the MSc programme. Some introductory lectures in finance provide a context for the use of these techniques.

Statistics

Probability and Distribution Theories
1. Probability
2. Random variables and probability distributions
3. Expectations and moments
4. Some univariate distributions
5. Multivariate distributions
6. Functions of random variables

Statistical Inference
7. Sampling
8. Large sample theory
9. Point estimation
10. Parametric interval estimation
11. Tests of statistical hypotheses

Teaching arrangements and assessment
Lectures take place in September, on Mondays, Tuesdays and Thursdays. We begin with a quick review of linear algebra and then carry on with statistical techniques. You will be expected to solve exercises in your own time.

Performance in this course is assessed through a two-hour written examination which you MUST pass. No resits are held.

Textbooks
Lecture notes are provided but are not a substitute for a textbook. We do not recommend any particular text, but in the past students have found the following useful.

3.2 Pre-sessional Quantitative Techniques (Finance)
Full-time and Part-time Year 1
Lecturer: Stephen Wright

Aims
These introductory lectures in finance introduce key ideas and concepts, such as no arbitrage pricing, risk-return tradeoffs and the Capital Asset Pricing Model and the basics of derivative pricing.

Course Assessment
A short multiple choice test taken at the same time as the qualifying examination in statistics.

Textbooks
There is no set text, and no required reading. Handouts will be provided that cover key ideas. Those wishing for additional background on some topics may also find the following texts useful (but not essential):

- Hull J, *Options, Futures and Other Derivative Securities*, Prentice-Hall
- Cochrane, J, *Asset Pricing*
3.3 Mathematical Methods

EMMS011S7

Full-time and Part-time 1
Autumn and Spring Terms, over 20 weeks
Lecturer: Brad Baxter

Aims

- To introduce students to the main mathematical and numerical techniques used in quantitative finance. The course is divided into three sub-modules and illustrated by examples drawn from this subject area.
- [MSc Financial Engineering only] To become acquainted with suitable languages and computer packages for financial applications (C++ and Matlab).

Objectives

a) Stochastic Processes for Finance

- To understand the basic concepts of stochastic calculus, in particular Brownian motion and stochastic integrals.
- To understand Ito calculus and its applications to stochastic differential equations (SDEs).
- To understand the numerical solution of an SDE.
- To appreciate the connections between probability theory and partial differential equations via the Feynman-Kac formula.

b) Theoretical Numerical Methods for Finance

- To solve SDEs using Monte Carlo simulation.
- To understand the fundamental algorithms for the numerical solution of parabolic partial differential equations (PDEs).
- To understand the binomial method for option pricing as a finite difference method, particularly its disadvantages.
- To appreciate the importance of stability in numerical algorithms for PDEs.
- To understand numerical methods for the solution of nonlinear equations and some basic optimization techniques.
- To know the basics of relevant numerical methods, eg data fitting.
- To illustrate the above by examples and exercises in Matlab.

c) Programming in C++ [MSc Financial Engineering only]

- To understand the language fundamentals of C and C++.
- To use arrays, dynamic memory allocation and data input/output.
- To understand and construct classes, illustrated by classes for complex numbers and matrix algebra.
- To use numerical libraries.

Course Assessment

Stochastic Processes (a) and Theoretical Numerical Methods (b) will be assessed via coursework (20%) and a three-hour examination in June (80%). Students are recommended to use their knowledge of Matlab and C++ in their final-year dissertation, where appropriate.

Textbooks

The courses will be based on fairly extensive lecture notes.
3.4 Financial Econometrics
EMMS012S7
Full-time, Part-time 1 and 2
Autumn and Spring Terms, over 20 weeks
Lecturer: Zacharias Psaradakis and Martin Sola

Aims
The course provides an introduction to the modern econometric techniques used in the analysis of financial time series. The interaction between theory and econometric analysis is emphasised, and students will be trained in formulating and testing financial models.

Objectives
At the end of the course, students will be able to demonstrate that they can:

- derive standard estimators (OLS, GLS, GIVE, ML, GMM) and establish their finite-sample and asymptotic properties;
- develop exact and/or asymptotic specification and misspecification tests;
- develop and analyse models for stationary univariate and multivariate time series;
- develop and analyse models for nonstationary and long-memory time series;
- develop and analyse nonlinear time-series models;
- understand and explain empirical articles in the literature of the sort that appear in the main economics and finance journals.

Topics
- Least squares theory
- Maximum likelihood theory
- Hypothesis testing and model evaluation
- Instrumental variables and GMM
- Univariate time-series models
- Multivariate time-series models
- Nonstationary time series and cointegration
- Nonlinear time-series models
- Applications

Course Assessment
3 hour exam in June.

Recommended Textbooks

3.5 Pricing
EMMS014S7

Full-time and Part-time 2
Autumn and Spring Terms, over 20 weeks
Lecturer: Raymond Brummelhuis and Hélyette Geman

Aims
To understand and be able to implement contingent claims (plain-vanilla and complex options in particular) and bond and other interest rate derivatives pricing by a variety of approaches: binomial, PDE and martingale pricing methods.

Objectives
- To develop problem-solving abilities to value derivative securities.
- To become acquainted with standard derivative and bond pricing models.
- To understand equivalent martingale measures and their role in option pricing.
- To understand valuation techniques based on change of numeraire.
- To understand the concepts of complete and incomplete markets.
- To apply the martingale approach to a variety of contexts: option pricing, term structure models for both defaultable and non-defaultable bonds.
- To understand the main types of single-name and structured credit derivatives and their pricing methodology, including its weaknesses.

Course Assessment
Coursework counts for 20% and a three-hour examination in June for 80%.

Textbooks
The courses will be based on fairly extensive lecture notes. Detailed reading lists will be provided during term.
3.6 Option: Risk Management, Part 1: Market Risk Management

Course number: BUEM053H7
Full-Time and Part-Time Year 1
Autumn
Credits: 15
Lecturers: Simon Hubbert

Course Aims and Objectives

To demonstrate an understanding of the different reasons for (and approaches to) measuring market risk. To gain a fundamental knowledge of the mathematical and statistical theory behind the subject and to be able to apply this to solve real-world problems.

On successful completion of this module a student will be expected to be able to:

- measure financial losses;
- demonstrate a sound theoretical knowledge of Value at Risk (VaR) and Tail Value at Risk (TVaR);
- compute VaR and TVaR (under certain distributional assumptions) for a given portfolio of risky assets;
- employ statistical tools to examine the stylized facts of asset returns;
- build and use risk models featuring jumps and stochastic volatility;
- demonstrate sound knowledge of the GARCH family of risk models and its applications;
- compute VaR for derivative portfolios;
- use extreme value theory applied to VaR and TVaR calculations;
- measure risk using simulation methods;
- statistically evaluate a given risk model using back-testing techniques.

Outline of topics

The course will focus on the following topics:

- Properties of financial time series
- Value at Risk and related measures for portfolios of standard assets
- Risk factor models – strengths and weaknesses
- Value at Risk for derivative portfolios
- Time series analysis for risk managers
- Extreme Value Theory and its applications in finance.

Course Assessment

The final grade is determined through a two-hour exam in June and a take-home exercise in the Christmas vacation

Recommended Texts

The core literature of the module consists of:

3.6 Risk Management, Part 2: Credit Risk Management

Course number: BUEM051H7
Full-Time and Part-Time Year 2
Spring Term
Credits: 15
Lecturers: Raymond Brummelhuis

Course Aims and Objectives

A gross lack of understanding of the dangers of too much exposure to credit risk caused the recent and on-going financial crisis. As a result, the future of financial risk management will place a high weight upon the accurate measurement and understanding of credit risk. This module is designed to deliver the essential mathematical and statistical methods underpinning the management of credit risk.

On successful completion of this module a student will be expected to be able to:

- demonstrate a sound knowledge of the essential mathematics of credit risk;
- demonstrate an excellent working knowledge of the most commonly used models in credit risk management;
- be able to price simple credit derivatives;
- demonstrate a sound understanding of the most actively used credit products, such as credit default swaps (CDS) and credit valuation adjustments (CVA);

Outline of topics:

The course will focus on the following topics:

- Essential Mathematics of Credit Risk – Stochastic processes and advanced probability theory;
- Well-known approaches to Credit Risk including the structural and reduced form models;
- Credit Default Swaps and Credit Value Adjustments.

Course Assessment:

2 hour examination in June (80% of the total marks) and course-work (20%).

Recommended Texts:

3.6 Option: Commodities and Commodity Derivatives
EMEC054S7
Full-time and Part-time 2
Autumn and Spring Term
Lecturers: Hélyette Geman and Rita D'Ecclesia

Aims

This course provides an analysis of commodity markets, their specificities and how they differ from bond and stock markets. The students will become familiar with the Exchanges, the instruments and the hedging and trading strategies. The different sub-classes of commodities are analysed and discussed: metals, agriculturals, shipping. The energy class (crude oil, coal and natural gas, electricity) will be analysed in detail. The course provides a thorough overview of recent developments in energy and commodities modelling, along with the necessary computational methods. Particular attention will be brought to the economic fundamentals, including inventory, reserves and forward curve).

Objectives

At the end of this course, students will be able to demonstrate that they can:
- understand the specificities of commodities as a new asset class;
- recognise the unique features of electricity markets (natural gas, hydro, nuclear and emissions);
- understand mathematical and statistical techniques;
- understand some of the important financial concepts underlying the theory of energy instruments as well as other commodities;
- apply econometric models to commodity spot and forward prices in order, in particular, to build a consistent model for a multi-commodity
- use trees and Monte-Carlo methods for the pricing of volumetric options (financial or real) that are specific to commodities markets

Course Assessment

Coursework counts for 20% and the June exam for 80%

Recommended Reading

- H. Geman (2008) "Risk Management in Commodity Markets: From Shipping to Agriculturals and Metals"
- C. Harris (2006) "Electricity Markets", Wiley Finance
Lecture Topics

The first paper of the course will be dedicated to the presentation of

- commodity spot markets
- major Exchanges
- liquid indexes
- most traded instruments

The theory of storage will relate inventory to the shape of the forward curve and spot price volatility.

The second part of the course will present

- the oil and refined products market
- Natural gas and LNG
- the coal market
- the shipping market and freight indices

The third part of the course will describe commodity risk management using forwards/Futures and options as well the unique challenges posed by the existence of spikes and structural breaks in price trajectories.

Seasonality, both in a deterministic and stochastic form, will be discussed in the context of agricultural and energy commodities.

Value at Risk and stress testing will be presented for commodity portfolios.

The fourth part of the course will be devoted to

- spot price modeling
- forward curve modeling (including through a PCA approach)
- option pricing models for commodity markets: Black, Margrabe, spread options
- inclusion of stochastic volatility
- gas storage and physical assets valuation

The last part will cover the unique features of electricity markets, the role of supply and demand in price formation and construction of the power stack function.

Emissions and carbon markets will be presented and discussed.
3.7 Dissertation
EMMS015D7
Full-time and Part-time 2
Spring and Summer term

Aims
The Dissertation requires students to apply the techniques and knowledge acquired from the taught courses. Students should:

- show that they have a good knowledge of the relevant literature on their chosen topic;
- identify an interesting question associated with that topic and analyse this question either in a new way or with new data;
- demonstrate they have a good grasp of techniques (statistical, numerical or theoretical) relevant for analysing the question;
- present the results of their analysis in a clear and convincing manner, within the word limit (6000 words)

Student must choose a suitable topic. Any subject that relates to material covered in the Programme is admissible, but it is generally sensible to stick to projects which contain some substantial element of statistical or numerical analysis. Theoretical projects are difficult although occasionally students have produced good work of this type. Purely institutional topics are not permitted.

On data, it is important not to be too ambitious. Often students spend inordinate amounts of time collecting large datasets and then find they have no time to perform analysis. Interesting analysis motivated by some genuine, substantive question earns high marks. Whatever is done, it is important that students time their work realistically. Aiming to complete the report in the last fortnight before the deadline is a recipe for trouble. If you are unfamiliar with econometric packages, everything takes longer than you expect. A good source of financial data is Datastream, which can be accessed using a computer in the Library. The principal databases cover equities, bonds, company accounts, economic series, international market indices, interest and exchange rates and financial and commodity futures and traded options

Schedule
Students must submit a one-page proposal by the end of week 6 in the Spring Term. This proposal should state the basic idea of the project, what data and computing facilities will be required and whether or not these are known to be available. Students are encouraged to contact lecturers in advance to discuss and refine their proposal.

The Department will then allocate a supervisor to guide your research. The choice of a supervisor depends on availability and interests of faculty members. Students should establish contact with their supervisors at an early stage, whether in person or via email to discuss supervision arrangements. An initial meeting to obtain advice on data, techniques and overall direction is valuable. Students should maintain contact with their supervisor (say by submitting a draft for comments and feedback). Ideally, this process should be completed by June.

July is for completing the research, and for writing up the Dissertation. Note that many supervisors are away in July and August, so communication via email alone may be possible. The final submission date is usually the last Friday in August.
4. Timetables

September timetable

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks 1</td>
<td>6-8.30 pm Statistics (AT)</td>
<td>6-8.30 pm Statistics (AT)</td>
<td>6-8 pm Introduction to Finance (SW)</td>
<td>6-8.30 pm Statistics (AT)</td>
</tr>
<tr>
<td>(starts 1 Sep)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td>6-8.30 pm Statistics (AT)</td>
<td>6-8.30 pm Statistics (AT)</td>
<td>6-8 pm Introduction to Finance (SW)</td>
<td>6-7 pm Statistics (AT)</td>
</tr>
<tr>
<td>(starts 8 Sep)</td>
<td></td>
<td></td>
<td></td>
<td>7.15 Test</td>
</tr>
<tr>
<td>Week 3</td>
<td>6-8.30 pm Statistics (RV)</td>
<td>6-8.30 pm Statistics (RV)</td>
<td>(TBC) 6-8 pm Introduction to Finance (SW)</td>
<td>6-8.30 pm Statistics (RV)</td>
</tr>
<tr>
<td>(starts 15 Sep)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 4</td>
<td>6-8.30 pm Statistics (RV)</td>
<td>6-8.30 pm Statistics (RV)</td>
<td>24 Sep: TESTS Statistics (6-7pm) & Finance (7.15-8.15 pm)</td>
<td></td>
</tr>
<tr>
<td>(starts 22 Sep)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To view your course timetable, please use the following link:
www.bbk.ac.uk/ems/for_students/msc_finEng
Get Ahead: Stay Ahead
www.bbk.ac.uk/ahead

Helping you get the best possible start to your course

At Birkbeck we want to make sure you get all the help you need to get your studies off to a great start and to provide you with support during your course. On the Get Ahead: Stay Ahead website you can access a range of online resources to help you:

• consider how you can achieve your goals
• find out what studying at Birkbeck is like
• improve your study skills and succeed on your course

The online materials are interactive tutorials that are free to use and you can work through them at your own pace.

www.bbk.ac.uk/ahead