Document Actions

Publications

  1. K. J. Edwards, S. D. Noble. The complexity of solution-free sets of integers. Under review. ArXiv
  2. J. E. Bonin, C. Chun, S. D. Noble. The excluded 3-minors for vf-safe delta-matroids. Advances in Applied Mathematics In Press. ArXiv
  3. J. E. Bonin, C. Chun, S. D. Noble. Delta-matroids as subsystems of sequences of Higgs lifts. Advances in Applied Mathematics In Press.   ArXiv
  4. C. Chun, D. Chun, T. Moss, S. D. Noble. e-exchange basis graph and matroid connectedness. Discrete Mathematics 342 (2019) 723-725.
  5. C. Chun, R. Hall, C. Merino, I. Moffatt, S. D. Noble. The structure of delta-matroids with width one twists. The Electronic Journal of Combinatorics 25 (2018) P1.9. Electronic Journal of Combinatorics
  6. D. Funk, D. Mayhew, S. D. Noble. How many delta-matroids are there? European Journal of Combinatorics 69 (2018) 149-158. ArXiv
  7. A. J. Goodall, M. Hermann, T. Kotek, J. A. Makowsky, S. D. Noble. On the complexity of generalized chromatic polynomials. Advances in Applied Mathematics 94 (2018) 71-102. ArXiv
  8. C. Chun, I. Moffatt, S. D. Noble, R. Rueckriemen. Matroids, delta-matroids and embedded graphs. Journal of Combinatorial Theory A 167 (2019) 7-59. ArXiv
  9. C. Chun, I. Moffatt, S. D. Noble, R. Rueckriemen. On the interplay between embedded graphs and delta-matroids. Proceedings of the London Mathematical Society 118 (2019) 675-700. ArXiv
  10. S. D.Noble. The U, V and W polynomials. Invited chapter for CRC Handbook on the Tutte Polynomial, editors J. Ellis-Monaghan, I. Moffatt.
  11. C. Chun, D. Chun, S. D. Noble. Inductive tools for connected delta-matroids and multimatroids. European Journal of Combinatorics 63 (2017) 59-69. ArXiv
  12. C. Chun, R. M.Hall, C. Merino, S. D. Noble. On zeros of the characteristic polynomial of matroids of bounded tree-width. European Journal of Combinatorics 60 (2017) 10-20. ArXiv
  13. S. D. Noble, G. F. Royle. The Merino-Welsh conjecture holds for series-parallel graphs. European Journal of Combinatorics 38 (2014) 24-35. ArXiv
  14. C. Merino, S. D. Noble, M. Ramírez-Ibañez and R. Villarroel. On the structure of the h-vector of a paving matroid. European Journal of Combinatorics 33 (2012) 1787-1799. ArXiv
  15. Y. Lin, S. D. Noble, X. Jin and W. Cheng. On plane graphs with link component number equal to the nullity. Discrete Applied Mathematics 160 (2012) 1369-1375.
  16. N. Eggemann and S. D. Noble. The complexity of two graph orientation problems. Discrete Applied Mathematics 160 (2012) 513-517. ArXiv
  17. S. D. Noble, P. Hansen and N. Mladenović. Maximizing edge-ratio is NP-complete. Discrete Applied Mathematics 159 (2011) 2276-2280. Brunel University Research Archive
  18. A. J. Goodall, A. de Mier, S. D. Noble and M. Noy. The Tutte polynomial characterizes simple outerplanar graphs. Combinatorics Probability and Computing 20 (2011) 609-616. Brunel University Research Archive
  19. L. Chávez-Lomelí, C. Merino, S. D. Noble and M. Ramírez-Ibañez. Some inequalities for the Tutte polynomial. European Journal of Combinatorics 32 (2011) 422-433. ArXiv
  20. A. J. Goodall, A. de Mier, S. D. Noble and M. Noy. The Tutte polynomial characterizes simple outerplanar graphs. Electronic Notes in Discrete Mathematics 38 (2011) 639-644.
  21. N. Eggemann and S. D. Noble. The clustering coefficient of a scale-free random graph. Discrete Applied Mathematics 159 (2011) 953-965. ArXiv
  22. N. Eggemann, F. Havet and S. D. Noble. k-L(2,1)-labelling for planar graphs is NP-complete for k ≥ 4. Discrete Applied Mathematics 158 (2010) 1777-1788. ArXiv
  23. N. Eggemann and S. D. Noble. Minimizing the oriented diameter of a planar graph. Electronic Notes in Discrete Mathematics 34 (2009) 267-271. Brunel University Research Archive
  24. C. Merino and S. D. Noble. The equivalence of two graph polynomials and a symmetric function. Combinatorics Probability and Computing 18 (2009) 601-615. ArXiv
  25. S. D. Noble. Evaluating a weighted graph polynomial for graphs of bounded tree-width. The Electronic Journal of Combinatorics 16 (2009) R64. Electronic Journal of Combinatorics
  26. S. D. Noble. Complexity of graph polynomials. In Combinatorics, Complexity and Chance - A Tribute to Dominic Welsh eds C. J. H. McDiarmid and G. R. Grimmett. Oxford University Press (2007).
  27. S. D. Noble. Evaluating the rank generating function of a graphic 2-polymatroid. Combinatorics, Probability and Computing 15 (2006) 449-461. Brunel University Research Archive
  28. I. Krasikov and S. D. Noble. Finding next-to-shortest paths in a graph. Information Processing Letters 92 (2004) 117-119. Brunel University Research Archive
  29. R. A. Leese and S. D. Noble. Cyclic labelling with constraints at two distances. Electronic Journal of Combinatorics. 11 (2004) R10. Electronic Journal of Combinatorics
  30. A. E. Koller and S. D. Noble. The domination number of greedy heuristics for the frequency assignment problem. Discrete Mathematics 275 (2004) 331-338. Brunel University Research Archive
  31. N. Calkin, C. Merino, S. D. Noble and M. Noy. Improved bounds for the number of forests and acyclic orientations in the square lattice. Electronic Journal of Combinatorics 10 (2003) R4. Electronic Journal of Combinatorics
  32. M. J. Luczak and S. D. Noble. Optimal arrangement of data in a tree directory. Discrete Applied Mathematics 121 (2002) 307-315. Brunel University Research Archive
  33. S. D. Noble and D. J. A. Welsh. Knot graphs. Journal of Graph 34 (2000) 100-111. Brunel University Research Archive
  34. S. D. Noble and D. J. A. Welsh. A weighted graph polynomial from Vassiliev invariants. Annales de l'Institut Fourier 49 (1999) 1057-1087.
  35. S. D. Noble. Evaluating the Tutte polynomial for graphs of bounded tree-width. Combinatorics, Probability and Computing 7 (1998) 307-323. Brunel University Research Archive
  36. S. D. Noble. Recognising a partitionable simplicial complex is in NP. Discrete Mathematics 152 (1996) 303-305. Brunel University Research Archive
Contact Details

Phone: +44 (0) 20 7631 6417

Email: s.noble@bbk.ac.uk

Room: 728

Current news