Options on Energy Portfolios in an HJM Framework

Thomas Lyse Hansen
SNG Consult

Bjarne Astrup Jensen
Department of Finance
Copenhagen Business School
Energy Options in an HJM Framework - I

- **TOPIC:** Modeling of options on portfolios of energy futures and flow forwards with stochastic spot prices, convenience yields and exchange rates
Energy Options in an HJM Framework - I

• **TOPIC:** Modeling of options on **portfolios** of energy futures and flow forwards with stochastic spot prices, convenience yields and exchange rates

• Convenience yields on energy commodities do not necessarily have the usual interpretation as (cf. Brennan (1991)):
Energy Options in an HJM Framework - I

• **TOPIC:** Modeling of options on *portfolios* of energy futures and flow forwards with stochastic spot prices, convenience yields and exchange rates

• Convenience yields on energy commodities do not necessarily have the usual interpretation as (cf. Brennan (1991)):

 “the flow of services that accrues to the holder of a physical commodity, but *not* to the owner of a contract for *future* delivery — measured per unit time and unit of the commodity.”
Energy Options in an HJM Framework - I

• **TOPIC:** Modeling of options on **portfolios** of energy futures and flow forwards with stochastic spot prices, convenience yields and exchange rates

• Convenience yields on energy commodities do not necessarily have the usual interpretation as (cf. Brennan (1991)):

 “the flow of services that accrues to the holder of a physical commodity, but *not* to the owner of a contract for future delivery — measured per unit time and unit of the commodity."

• The “underlying” may be
Energy Options in an HJM Framework - I

- **TOPIC:** Modeling of options on portfolios of energy futures and flow forwards with stochastic spot prices, convenience yields and exchange rates

- Convenience yields on energy commodities do not necessarily have the usual interpretation as (cf. Brennan (1991)):

 "the flow of services that accrues to the holder of a physical commodity, but *not* to the owner of a contract for *future* delivery — measured per unit time and unit of the commodity."

- The “underlying” may be

- non-storable (electricity) or subject to transportation costs, time of delivery, transmission capacity constraints and even politically determined flow constraints
Energy Options in an HJM Framework - I

- **TOPIC:** Modeling of options on portfolios of energy futures and flow forwards with stochastic spot prices, convenience yields and exchange rates

- Convenience yields on energy commodities do not necessarily have the usual interpretation as (cf. Brennan (1991)):

 “the flow of services that accrues to the holder of a physical commodity, but *not* to the owner of a contract for *future* delivery — measured per unit time and unit of the commodity.”

- The “underlying” may be

- non-storable (electricity) or subject to transportation costs, time of delivery, transmission capacity constraints and even politically determined flow constraints

- Hence, futures prices live a life of their own, more or less separated from the behavior of spot prices
TOPIC: Modeling of options on portfolios of energy futures and flow forwards with stochastic spot prices, convenience yields and exchange rates

Convenience yields on energy commodities do not necessarily have the usual interpretation as (cf. Brennan (1991)):

"the flow of services that accrues to the holder of a physical commodity, but not to the owner of a contract for future delivery — measured per unit time and unit of the commodity."

The “underlying” may be

non-storable (electricity) or subject to transportation costs, time of delivery, transmission capacity constraints and even politically determined flow constraints

Hence, futures prices live a life of their own, more or less separated from the behavior of spot prices

a flow magnitude, i.e. something to delivered over a future time interval and not as a future spot transaction
Options on Energy Portfolios in an HJM Framework - II

- Exchange risk is relevant to consider in an energy context
Options on Energy Portfolios in an HJM Framework - II

- Exchange risk is relevant to consider in an energy context
- Usually, spot prices across countries are just exchange rate adjusted spot prices
Options on Energy Portfolios in an HJM Framework - II

- Exchange risk is relevant to consider in an energy context
- Usually, spot prices across countries are just exchange rate adjusted spot prices
- This may even fail due to frictions
Options on Energy Portfolios in an HJM Framework - II

- Exchange risk is relevant to consider in an energy context
- Usually, spot prices across countries are just exchange rate adjusted spot prices
- This may even fail due to frictions
- Convenience yields are stochastic and have a term structure
Options on Energy Portfolios in an HJM Framework - II

- Exchange risk is relevant to consider in an energy context
- Usually, spot prices across countries are just exchange rate adjusted spot prices
- This may even fail due to frictions
- Convenience yields are stochastic and have a term structure
- SOME REFERENCES
Options on Energy Portfolios in an HJM Framework - II

- Exchange risk is relevant to consider in an energy context
- Usually, spot prices across countries are just exchange rate adjusted spot prices
- This may even fail due to frictions
- Convenience yields are stochastic and have a term structure

SOME REFERENCES
Options on Energy Portfolios in an HJM Framework - II

- Exchange risk is relevant to consider in an energy context
- Usually, spot prices across countries are just exchange rate adjusted spot prices
- This may even fail due to frictions
- Convenience yields are stochastic and have a term structure

SOME REFERENCES
Options on Energy Portfolios in an HJM Framework - II

- Exchange risk is relevant to consider in an energy context.
- Usually, spot prices across countries are just exchange rate adjusted spot prices.
- This may even fail due to frictions.
- Convenience yields are stochastic and have a term structure.

SOME REFERENCES

Options on Energy Portfolios in an HJM Framework - II

• Exchange risk is relevant to consider in an energy context
• Usually, spot prices across countries are just exchange rate adjusted spot prices
• This may even fail due to frictions
• Convenience yields are stochastic and have a term structure

SOME REFERENCES
OVERVIEW OF RESULTS
• OVERVIEW OF RESULTS
• A theoretical result about the identity between domestic and foreign \textit{forward} convenience yields, but in general a non-identity between domestic and foreign \textit{futures} convenience yields
OVERVIEW OF RESULTS

- A theoretical result about the identity between domestic and foreign *forward* convenience yields, but in general a non-identity between domestic and foreign *futures* convenience yields.

- This is related to the fact that forward prices across currencies are related via the forward exchange rate; but the conversion of futures prices involves the correlation between the discount factor and the exchange rate.
OVERVIEW OF RESULTS

A theoretical result about the identity between domestic and foreign forward convenience yields, but in general a non-identity between domestic and foreign futures convenience yields.

This is related to the fact that forward prices across currencies are related via the forward exchange rate; but the conversion of futures prices involves the correlation between the discount factor and the exchange rate.

Approximate closed-form solutions for options prices on portfolios of futures when the diffusion functions for the three stochastic processes are deterministic.
OVERVIEW OF RESULTS

A theoretical result about the identity between domestic and foreign *forward* convenience yields, but in general a non-identity between domestic and foreign *futures* convenience yields.

This is related to the fact that forward prices across currencies are related via the forward exchange rate; but the conversion of futures prices involves the correlation between the discount factor and the exchange rate.

Approximate closed-form solutions for options prices on portfolios of futures when the diffusion functions for the three stochastic processes are deterministic.

Monte Carlo results that investigate the precision of the closed-form options prices in a Gaussian set-up.
OVERVIEW OF RESULTS

A theoretical result about the identity between domestic and foreign forward convenience yields, but in general a non-identity between domestic and foreign futures convenience yields.

This is related to the fact that forward prices across currencies are related via the forward exchange rate; but the conversion of futures prices involves the correlation between the discount factor and the exchange rate.

Approximate closed-form solutions for options prices on portfolios of futures when the diffusion functions for the three stochastic processes are deterministic.

Monte Carlo results that investigate the precision of the closed-form options prices in a Gaussian set-up.

Extensions to more general dynamics for the stochastic processes.
• **OVERVIEW OF RESULTS**

• A theoretical result about the identity between domestic and foreign *forward* convenience yields, but in general a non-identity between domestic and foreign *futures* convenience yields.

• This is related to the fact that forward prices across currencies are related via the forward exchange rate; but the conversion of futures prices involves the correlation between the discount factor and the exchange rate.

• Approximate closed-form solutions for options prices on portfolios of futures when the diffusion functions for the three stochastic processes are deterministic.

• Monte Carlo results that investigate the precision of the closed-form options prices in a Gaussian set-up.

• Extensions to more general dynamics for the stochastic processes.

• Other applications of the modeling approach.
Options on Energy Portfolios in an HJM Framework - IV

- HJM AND OPTION PRICING: BASICS
HJM AND OPTION PRICING: BASICS

For the purpose of option pricing, it is only relevant to consider an “equivalent martingale measure”, equivalent to the physical probability measure P.
HJM AND OPTION PRICING: BASICS

For the purpose of option pricing, it is only relevant to consider an “equivalent martingale measure”, equivalent to the physical probability measure P.

Time line showing the time of option pricing (0), the option expiration time (t) and the expiration time of the underlying futures contract (T).
Options on Energy Portfolios in an HJM Framework - V

- HJM AND OPTION PRICING: Convenience Yields
HJM AND OPTION PRICING: Convenience Yields

The forward interest rate process \((f(t, s))_{t \leq s} \)

\[
P(t, T) = E^Q_t \left[e^{- \int_t^T r_s ds} \right] = e^{- \int_t^T f(t, s) ds}
\]
HJM AND OPTION PRICING: Convenience Yields

The forward interest rate process \((f(t, s))_{t \leq s}\)

\[P(t, T) = E_{t}^{Q} \left[e^{-\int_{t}^{T} r_{s} ds} \right] = e^{-\int_{t}^{T} f(t, s) ds} \]

The forward convenience yield process \((\delta(t, s))_{t \leq s}\)

\[G(t, T) = \frac{S_{t}}{P(t, T)} e^{-\int_{t}^{T} \delta(t, s) ds} = S_{t} e^{\int_{t}^{T} (f(t, s) - \delta(t, s)) ds} \]
Options on Energy Portfolios in an HJM Framework - V

- **HJM AND OPTION PRICING: Convenience Yields**
- The forward interest rate process \((f(t, s))_{t \leq s}\)

\[
P(t, T) = E_t^Q \left[e^{-\int_t^T r_s ds} \right] = e^{-\int_t^T f(t, s) ds}
\]

- The forward convenience yield process \((\delta(t, s))_{t \leq s}\)

\[
G(t, T) = \frac{S_t}{P(t, T)} e^{-\int_t^T \delta(t, s) ds} = S_t e^{\int_t^T (f(t, s) - \delta(t, s)) ds}
\]

- The futures convenience yield process \((\epsilon(t, s))_{t \leq s}\)

\[
F(t, T) = \frac{S_t}{P(t, T)} e^{-\int_t^T \epsilon(t, s) ds} = S_t e^{\int_t^T (f(t, s) - \epsilon(t, s)) ds}
\]
Options on Energy Portfolios in an HJM Framework - VI

• HJM AND OPTION PRICING: Forward and Futures Prices
Options on Energy Portfolios in an HJM Framework - VI

- HJM AND OPTION PRICING: Forward and Futures Prices
- Let x_t be the exchange rate and let * denote values expressed in foreign currency
Options on Energy Portfolios in an HJM Framework - VI

- **HJM AND OPTION PRICING: Forward and Futures Prices**
 - Let x_t be the exchange rate and let * denote values expressed in foreign currency

\[
G(t, T) = S_t e^{\int_t^T (f(t,s) - \delta(t,s)) ds} = x_t S_t^* e^{\int_t^T (f(t,s) - \delta(t,s)) ds}
\]

\[
F(t, T) = S_t e^{\int_t^T (f(t,s) - \epsilon(t,s)) ds} = x_t S_t^* e^{\int_t^T (f(t,s) - \epsilon(t,s)) ds}
\]

\[
G^*(t, T) = S_t^* e^{\int_t^T (f^*(t,s) - \delta^*(t,s)) ds} = S_t^* e^{\int_t^T (f^*(t,s) - \delta^*(t,s)) ds}
\]

\[
F^*(t, T) = S_t^* e^{\int_t^T (f^*(t,s) - \epsilon^*(t,s)) ds} = S_t^* e^{\int_t^T (f^*(t,s) - \epsilon^*(t,s)) ds}
\]
Options on Energy Portfolios in an HJM Framework - VII

- HJM AND OPTION PRICING: Forward and Futures Prices
HJM AND OPTION PRICING: Forward and Futures Prices

Result: Forward convenience yields in two currencies are identical
Options on Energy Portfolios in an HJM Framework - VII

- **HJM AND OPTION PRICING: Forward and Futures Prices**
- **Result:** Forward convenience yields in two currencies are identical
- **Result:** Forward prices are related by the forward exchange rate:

\[
G(t, T) = \left(x_t \frac{P^*(t, T)}{P(t, T)} \right) G^*(t, T)
\]
Options on Energy Portfolios in an HJM Framework - VII

- **HJM AND OPTION PRICING: Forward and Futures Prices**
- **Result:** Forward convenience yields in two currencies are identical.
- Forward prices are related by the forward exchange rate:

\[
G(t, T) = \left(x_t \frac{P^*(t, T)}{P(t, T)} \right) G^*(t, T)
\]

- Whenever forward and futures prices are identical, the futures convenience yields are also identical and the futures prices are related by the forward exchange rate:

\[
F(t, T) = \left(x_t \frac{P^*(t, T)}{P(t, T)} \right) F^*(t, T)
\]
HJM AND OPTION PRICING: BASIC FACTS
HJM AND OPTION PRICING: BASIC FACTS

However, when this is not the case the futures convenience yields will only be equal by coincidence.
HJM AND OPTION PRICING: BASIC FACTS

However, when this is not the case the futures convenience yields will only be equal by coincidence.

This is due to the continuous resettlement of the contract and possible correlation under Q between the spot price process and the interest rate process.
HJM AND OPTION PRICING: BASIC FACTS

However, when this is not the case the futures convenience yields will only be equal by coincidence.

This is due to the continuous resettlement of the contract and possible correlation under Q between the spot price process and the interest rate process.

The relation between the two futures prices involve the (Q)-covariance properties between the exchange rate and the domestic discount factor. The futures convenience yields are identical if and only if

\[x_t P^*(t, T) F^*(t, T) = P(t, T) F(t, T) \iff \]

\[E^Q_t \left[x_t P^*(t, T) \frac{S_T}{x_T} \right] = E^Q_t \left[P^*(t, T) e^{\int_t^T (r_s^* - r_s) ds} S_T \right] = E^Q_t [P(t, T) S_T] \]
HJM AND OPTION PRICING: BASIC FACTS

However, when this is not the case the futures convenience yields will only be equal by coincidence.

This is due to the continuous resettlement of the contract and possible correlation under \(Q \) between the spot price process and the interest rate process.

The relation between the two futures prices involve the \((Q)\)-covariance properties between the exchange rate and the domestic discount factor. The futures convenience yields are identical if and only if

\[
x_t P^*(t, T) F^*(t, T) = P(t, T) F(t, T) \quad \Leftrightarrow \\
E^Q_t \left[x_t P^*(t, T) \frac{S_T}{x_T} \right] = E^Q_t \left[P^*(t, T) e^{\int_t^T (r_s^* - r_s) ds} S_T \right] = E^Q_t \left[P(t, T) S_T \right]
\]

If e.g. \(r_s^* - r_s \) is deterministic we have

\[
P^*(t, T) = e^{-\int_t^T (r_s^* - r_s) ds} P(t, T) + Cov_t^Q \left(\frac{x_T}{x_t}, e^{-\int_t^T r_s ds} \right)
\]
HJM AND OPTION PRICING: DYNAMICS OF THE BASIC STOCHASTIC PROCESSES

The spot price process S_t

$$S_t = s_0 + \int_0^t S_u \mu_S(u) du + \int_0^t S_u \sigma_S(u) \cdot dW^Q_u$$
HJM AND OPTION PRICING: DYNAMICS OF THE BASIC STOCHASTIC PROCESSES

The spot price process \((S_t)\)

\[
S_t = s_0 + \int_0^t S_u \mu_S(u) du + \int_0^t S_u \sigma_S(u) \cdot dW^Q_u
\]

The forward interest rate process \((f(t, s))_{t \leq s}\)

\[
f(t, s) = f_0 + \int_0^t \mu_f(u, s) du + \int_0^t \sigma_f(u, s) \cdot dW^Q_u
\]
Options on Energy Portfolios in an HJM Framework - IX

- **HJM AND OPTION PRICING: DYNAMICS OF THE BASIC STOCHASTIC PROCESSES**

 The spot price process \((S_t)\)

 \[S_t = s_0 + \int_0^t S_u \mu_S(u) du + \int_0^t S_u \sigma_S(u) \cdot dW^Q_u \]

 - The forward interest rate process \((f(t, s))_{t \leq s}\)

 \[f(t, s) = f_0 + \int_0^t \mu_f(u, s) du + \int_0^t \sigma_f(u, s) \cdot dW^Q_u \]

 - The futures convenience yield process \((\epsilon(t, s))_{t \leq s}\)

 \[\epsilon(t, s) = \epsilon_0 + \int_0^t \mu_\epsilon(u, s) du + \int_0^t \sigma_\epsilon(u, s) \cdot dW^Q_u \]
• HJM AND OPTION PRICING: IMPLIED DYNAMICS OF THE FUTURES PRICE PROCESSES
Options on Energy Portfolios in an HJM Framework - X

- HJM AND OPTION PRICING: IMPLIED DYNAMICS OF THE FUTURES PRICE PROCESSES
- The dynamics of $F(t, T)$ can be shown to be

\[F(t, T) = F(0, T) + \int_0^t F(u, T)s_F(u, T) \cdot dW_u^Q \]
HJM AND OPTION PRICING: IMPLIED DYNAMICS OF THE FUTURES PRICE PROCESSES

The dynamics of $F(t, T)$ can be shown to be

$$F(t, T) = F(0, T) + \int_0^t F(u, T)s_F(u, T) \cdot dW_u^Q$$

where the volatility function s_F is given as

$$s_F(u, T) = \sigma_S(u) + \int_u^T (\sigma_f(u, s) - \sigma_\epsilon(u, s)) \, ds$$
Options on Energy Portfolios in an HJM Framework - X

• **HJM AND OPTION PRICING: IMPLIED DYNAMICS OF THE FUTURES PRICE PROCESSES**

• The dynamics of $F(t, T)$ can be shown to be

$$F(t, T) = F(0, T) + \int_0^t F(u, T)s_F(u, T) \cdot dW_u^Q$$

• where the volatility function s_F is given as

$$s_F(u, T) = \sigma_S(u) + \int_u^T (\sigma_f(u, s) - \sigma_\epsilon(u, s)) \, ds$$

• Exchange rate risk is captured by $\sigma_S(u)$ and may make up a significant part of the spot price volatility in domestic currency
• HJM AND OPTION PRICING: PRICE FORMULA FOR A EUROPEAN CALL OPTION
HJM AND OPTION PRICING: PRICE FORMULA FOR A EUROPEAN CALL OPTION

The pay-off function at time \(t < T \) for a European strike-\(K \) call option with the futures price \(F(t, T) \) as underlying variable is

\[
C_t = \max\{0, F(t, T) - K\}
\]

The pricing function at time \(0 < t < T \) can be shown to be

\[
C_0 = P(0, t) \left(F(0, T)\Phi(d_1) - K\Phi(d_2) \right)
\]

where

\[
d_1 = \frac{\log \frac{F(0, T)}{K} + \frac{1}{2} \Sigma^2_F}{\sqrt{\Sigma^2_F}}, \quad d_2 = d_1 - \sqrt{\Sigma^2_F}, \quad \Sigma^2_F = \int_0^t ||s_F(u, T)||^2 du
\]
Options on Energy Portfolios in an HJM Framework - XII

- APPROXIMATE CLOSED-FORM SOLUTIONS FOR OPTION PRICES
• APPROXIMATE CLOSED-FORM SOLUTIONS FOR OPTION PRICES

• The dynamics for the “value” of a futures portfolio $H(u)$ is

$$
\begin{align*}
 dH(u) &= \sum_{i=1}^{n} \alpha_i dF(u, T_i) = \sum_{i=1}^{n} \alpha_i F(u, T_i) \sum_{j=1}^{d} s_{F_j}(u, T_i) dW^Q_j(u) \\
 &= H(u) \left(\sum_{i=1}^{n} w(u, T_i) \sum_{j=1}^{d} s_{F_j}(u, T_i) dW^Q_j(u) \right) \\
 &= H(u) \left(\sum_{i=1}^{n} \sum_{j=1}^{d} w(u, T_i) s_{F_j}(u, T_i) dW^Q_j(u) \right),
\end{align*}
$$

THE APPROXIMATION IN THE CALL CASE IS
THE APPROXIMATION IN THE CALL CASE IS

\[C^H (0; t, K) \approx \varphi C^F (0, t; T; \frac{K}{\varphi}) \] (1)

where \(T \in [t, \bar{T}] \) is some chosen maturity of an approximating single-delivery futures and the scaling factor \(\varphi \) is given by

\[\varphi = \frac{H(0)}{F(0, T)} \]
STOCHASTIC DURATION, DEF. 1 ($\delta_H(0)$ [MYOPIC])

$$\sum_{j=1}^{d} s_{F_j}(0, \delta_H(0))^2 = \sum_{j=1}^{d} \left(\sum_{i=1}^{n} w(0, T_i) s_{F_j}(0, T_i) \right)^2$$
Options on Energy Portfolios in an HJM Framework - XIV

• STOCHASTIC DURATION, DEF. 1 ($\delta_H(0)$ [MYOPIC])

$$\sum_{j=1}^{d} s_{F_j}(0, \delta_H(0))^2 = \sum_{j=1}^{d} \left(\sum_{i=1}^{n} w(0, T_i) s_{F_j}(0, T_i) \right)^2$$

• STOCHASTIC DURATION, DEF. 2 ($\delta_A^H(0)$) [GLOBAL])

$$\int_{0}^{t} \sum_{j=1}^{d} s_{F_j}(u, \delta_A^H(0))^2 du = \int_{0}^{t} \sum_{j=1}^{d} \left(\sum_{i=1}^{n} w(0, T_i) s_{F_j}(u, T_i) \right)^2 du$$
Options on Energy Portfolios in an HJM Framework - XIV

- **STOCHASTIC DURATION, DEF. 1** ($\delta_H(0)$ [MYOPIC])

\[
\sum_{j=1}^{d} s_{F_j}(0, \delta_H(0))^2 = \sum_{j=1}^{d} \left(\sum_{i=1}^{n} w(0, T_i) s_{F_j}(0, T_i) \right)^2
\]

- **STOCHASTIC DURATION, DEF. 2** ($\delta^H_A(0)$) [GLOBAL])

\[
\int_0^t \sum_{j=1}^{d} s_{F_j}(u, \delta^H_A(0))^2 du = \int_0^t \sum_{j=1}^{d} \left(\sum_{i=1}^{n} w(0, T_i) s_{F_j}(u, T_i) \right)^2 du
\]

- The true volatility, \(\int_0^t \sum_{j=1}^{d} \left(\sum_{i=1}^{n} w(u, T_i) s_{F_j}(u, T_i) \right)^2 du \), is stochastic, but we operate with the above approximation.
MONTE CARLO RESULTS FOR THE CALL CASE

<table>
<thead>
<tr>
<th>Strike</th>
<th>Price deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$C[^H]$</td>
</tr>
<tr>
<td>70%</td>
<td>0.14</td>
</tr>
<tr>
<td>80%</td>
<td>0.02</td>
</tr>
<tr>
<td>85%</td>
<td>-0.07</td>
</tr>
<tr>
<td>90%</td>
<td>-0.08</td>
</tr>
<tr>
<td>95%</td>
<td>-0.19</td>
</tr>
<tr>
<td>100%</td>
<td>-0.20</td>
</tr>
<tr>
<td>105%</td>
<td>-0.06</td>
</tr>
<tr>
<td>110%</td>
<td>-0.15</td>
</tr>
<tr>
<td>115%</td>
<td>0.05</td>
</tr>
<tr>
<td>120%</td>
<td>0.09</td>
</tr>
<tr>
<td>130%</td>
<td>0.00</td>
</tr>
<tr>
<td>SSD</td>
<td>0.146</td>
</tr>
</tbody>
</table>

Commodities Conference, Birkbeck College, 17-18 January 2007 – p.16/19
Options on Energy Portfolios in an HJM Framework - XVI

MONTE CARLO RESULTS FOR THE PUT CASE

<table>
<thead>
<tr>
<th>Strike</th>
<th>$P[\delta^H]$</th>
<th>$P[\delta^H_A]$</th>
<th>$P\left[\frac{\delta^H + \delta^H_A}{2}\right]$</th>
<th>$P[\delta^H] + P[\delta^H_A]$</th>
<th>$\hat{\nu}_1 P[\delta^H] + \hat{\nu}_2 P[\delta^H_A]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>70%</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>80%</td>
<td>0.02</td>
<td>0.11</td>
<td>0.06</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>85%</td>
<td>-0.10</td>
<td>0.07</td>
<td>-0.03</td>
<td>-0.03</td>
<td>-0.01</td>
</tr>
<tr>
<td>90%</td>
<td>-0.16</td>
<td>0.09</td>
<td>-0.05</td>
<td>-0.04</td>
<td>-0.02</td>
</tr>
<tr>
<td>95%</td>
<td>-0.25</td>
<td>0.07</td>
<td>-0.11</td>
<td>-0.09</td>
<td>-0.07</td>
</tr>
<tr>
<td>100%</td>
<td>-0.25</td>
<td>0.11</td>
<td>-0.09</td>
<td>-0.07</td>
<td>-0.05</td>
</tr>
<tr>
<td>105%</td>
<td>-0.27</td>
<td>0.10</td>
<td>-0.11</td>
<td>-0.09</td>
<td>-0.07</td>
</tr>
<tr>
<td>110%</td>
<td>-0.13</td>
<td>0.22</td>
<td>0.03</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>115%</td>
<td>-0.14</td>
<td>0.16</td>
<td>-0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>120%</td>
<td>-0.05</td>
<td>0.21</td>
<td>0.06</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>130%</td>
<td>-0.07</td>
<td>0.12</td>
<td>0.02</td>
<td>0.02</td>
<td>-0.01</td>
</tr>
<tr>
<td>SSD</td>
<td>0.280</td>
<td>0.185</td>
<td>0.045</td>
<td>0.034</td>
<td>0.025</td>
</tr>
</tbody>
</table>
Options on Energy Portfolios in an HJM Framework - XVII

• EXTENSIONS TO MORE GENERAL DYNAMICS
EXTENSIONS TO MORE GENERAL DYNAMICS

More general formulations of the processes for the log price, interest rates and convenience yields are possible. The only condition to fulfill is that closed-form solutions for pricing single-delivery futures/forwards should exist.
• EXTENSIONS TO MORE GENERAL DYNAMICS
• More general formulations of the processes for the log price, interest rates and convenience yields are possible. The only condition to fulfill is that closed-form solutions for pricing single-delivery futures/forwards should exist.
• Examples are e.g.
EXTENSIONS TO MORE GENERAL DYNAMICS

More general formulations of the processes for the log price, interest rates and convenience yields are possible. The only condition to fulfill is that closed-form solutions for pricing single-delivery futures/forwards should exist.

Examples are e.g.

- Square root models (CIR) with non-central χ^2-distributions
EXTENSIONS TO MORE GENERAL DYNAMICS

More general formulations of the processes for the log price, interest rates and convenience yields are possible. The only condition to fulfill is that closed-form solutions for pricing single-delivery futures/forwards should exist.

Examples are e.g.

- Square root models (CIR) with non-central χ^2-distributions
- All affine models, i.e. where the single-delivery log prices are affine functions of the state variables
Options on Energy Portfolios in an HJM Framework - XVIII

- OTHER APPLICATIONS
• OTHER APPLICATIONS
 • Portfolios with or forwards or futures on different types of energy or commodities as underlying
OTHER APPLICATIONS

- Portfolios with or forwards or futures on different types of energy or commodities as underlying
- Analytical VaR on such portfolios
Options on Energy Portfolios in an HJM Framework - XVIII

• OTHER APPLICATIONS
 • Portfolios with or forwards or futures on different types of energy or commodities as underlying
 • Analytical VaR on such portfolios
 • Valuation of cross-commodity options
Options on Energy Portfolios in an HJM Framework - XVIII

- OTHER APPLICATIONS
 - Portfolios with or forwards or futures on different types of energy or commodities as underlying
 - Analytical VaR on such portfolios
 - Valuation of cross-commodity options